Abstract
IT is widely understood that the collapse of the West Antarctic ice sheet (WAIS) would cause a global sea level rise of 6 m, yet there continues to be considerable debate about the detailed response of this ice sheet to climate changel–3. Because its bed is grounded well below sea level, the stability of the WAIS may depend on geologically controlled conditions at the base which are independent of climate. In particular, heat supplied to the base of the ice sheet could increase basal melting and thereby trigger ice streaming, by providing the water for a lubricating basal layer of till on which ice streams are thought to slide4,5. Ice streams act to protect the reservoir of slowly moving inland ice from exposure to oceanic degradation, thus enhancing ice-sheet stability. Here we present aerogeophysical evidence for active volcanism and associated elevated heat flow beneath the WAIS near the critical region where ice streaming begins. If this heat flow is indeed controlling ice-stream formation, then penetration of ocean waters inland of the thin hot crust of the active portion of the West Antarctic rift system could lead to the disappearance of ice streams, and possibly trigger a collapse of the inland ice reservoir.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Evidence of an active volcanic heat source beneath the Pine Island Glacier
Nature Communications Open Access 22 June 2018
-
The first physical evidence of subglacial volcanism under the West Antarctic Ice Sheet
Scientific Reports Open Access 13 September 2017
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout
References
Mercer, J. H. Nature 271, 321–325 (1978).
Thomas, R. H. J. Glaciol. 24, 167–177 (1979).
MacAyeal, D. R. Nature 359, 29–32 (1992).
Blankenship, D. D., Bentley, C. R., Rooney, S. T. & Alley, R. B. Nature 322, 54–57 (1986).
Alley, R. B., Blankenship, D. D., Bentley, C. R. & Rooney, S. T. Nature 332, 57–59 (1986).
LeMasurier, W. E. Abstr. Progr. 10, 443 (Geological Society of America, 1978).
Wilson, T. J., Antarct. J. 25, 31–34 (1991).
Davey, F. J. in The Antarctic Continental Margin. Geology and Geophysics of the Western Ross Sea, 1–16 (Circum-Pacific Council for Energy and Resources, Houston, 1987).
Behrendt, J. C., Cooper, A. K. & Yuan, A. in The Antarctic Continental Margin: Geology and Geophysics of the Western Ross Sea, 155–177 (Circum-Pacific Council for Energy and Resources, Houston, 1987).
LeMasurier, W. E. & Thomson, J. W. (eds) Volcanoes of the Antarctic Plate and Southern Oceans (American Geophysical Union, 1990).
Robin, G. de Q., Nature 215, 1029–1032 (1967).
Paterson, W. S. B. The Physics of Glaciers (Pergamon, Oxford, 1981).
Bjornsson, H. Jökull 33, 13–18 (1983).
Clarke, G. K. C., Cross, G. M. & Benson, C. S. J. geophys. Res 94, 7237–7249 (1989).
Bindschadler, R. A. & Scambos, T. A. Science 252, 242–246 (1991).
Dalziel, I. W. D. & Elliot, D. H. Tectonics 1, 3–19 (1982).
Drewry, D. J. Antarctica: Glaciological and Geophysical Folio (Scott Polar Research Institute, Cambridge, 1983).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Blankenship, D., Bell, R., Hodge, S. et al. Active volcanism beneath the West Antarctic ice sheet and implications for ice-sheet stability. Nature 361, 526–529 (1993). https://doi.org/10.1038/361526a0
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/361526a0
This article is cited by
-
Tectono-magmatic domes: the stationary plate equivalent of a linear volcanic chain
Bulletin of Volcanology (2022)
-
Evidence of an active volcanic heat source beneath the Pine Island Glacier
Nature Communications (2018)
-
Combined Gravimetric–Seismic Crustal Model for Antarctica
Surveys in Geophysics (2018)
-
The first physical evidence of subglacial volcanism under the West Antarctic Ice Sheet
Scientific Reports (2017)
-
Lakes under the ice: Antarctica’s secret garden
Nature (2014)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.