Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Materials with structural hierarchy

Abstract

Many natural and man-made materials exhibit structure on more than one length scale; in some materials, the structural elements themselves have structure. This structural hierarchy can play a large part in determining the bulk material properties. Understanding the effects of hierarchical structure can guide the synthesis of new materials with physical properties that are tailored for specific applications.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

References

  1. Mandelbrot, B. The Fractal Geometry of Nature (Freeman, New York, 1983).

    Book  Google Scholar 

  2. Loyrette, H. Gustave Eiffel (Rizolli, New York, 1985).

    Google Scholar 

  3. Harriss, J. The Tallest Tower (Houghton Mifflin, Boston, 1975).

    Google Scholar 

  4. Hart, F., Henn, W. & Sontag, H. Multi-Storey Buildings in Steel. 2nd Edn (ed. Godfrey, G. B.) (Nichols, New York, 1982).

    Google Scholar 

  5. Dyson, F. J. in Perspectives in Modern Physics: Essays in Honor of Hans Bethe (ed. Marshak, R. E.) 641–655 (Wiley Interscience, New York, 1966).

    Google Scholar 

  6. Parkhouse, J. G. Proc. 3rd Int. Conf. Space Structures (ed. Nooshin, N.) (Elsevier Applied Science, London, 1984).

    Google Scholar 

  7. Parkinson, J. New Civil Engineer 521, (23 December 1982).

    Google Scholar 

  8. Hashin, Z. J. appl. Mech. 50, 481–505 (1983).

    Article  Google Scholar 

  9. Christensen, R. M. Mechanics of Composite Materials (Wiley, New York, 1979).

    Google Scholar 

  10. Agarwal, B. D. & Broutman, L. J. Analysis and Performance of Fiber Composites (Wiley, New York, 1980).

    Google Scholar 

  11. Ahmed, S. & Jones, F. R. J. Mater. Sci. 25, 4933–4942 (1990).

    Article  ADS  CAS  Google Scholar 

  12. Gibson, L. J. & Ashby, M. F. Cellular Solids (Pergamon, Oxford, 1988).

    MATH  Google Scholar 

  13. Smith, C. S. in Hierarchical Structures (ed. Whyte, L. L., Wilson, A. G. & Wilson, D.) (Elsevier, New York, 1969).

    Google Scholar 

  14. Nowick, A. S. & Berry, B. S. Anelastic Relaxation in Crystalline Solids (Academic, New York, 1972).

    Google Scholar 

  15. Zener, C. Elasticity and Anelasticity of Metals (Univ. of Chicago Press, 1948).

    MATH  Google Scholar 

  16. Eastman, J. & Siegel, R. W. Res. Devel. 31, 56–60 (1989).

    CAS  Google Scholar 

  17. Siegel, R. W. & Hahn, H. in Current Trends in the Physics of Materials (ed. Yussouf, M.) (World Scientific, Singapore, 1987).

    Google Scholar 

  18. Hahn, H. & Averback, R. S. J. appl. Phys. 67, 1113–1115 (1990).

    Article  ADS  CAS  Google Scholar 

  19. Sawaguchi, A., Toda, K. & Nihara, K. J. Am. Ceram. Soc. 74, 1142–1144 (1991).

    Article  CAS  Google Scholar 

  20. Bruggeman, D. A. G. Elastizitätskonstanten von Kristallaggregaten (Wolters Uitgevers-Maatschappi, Groningen, 1930).

    Google Scholar 

  21. Schulgasser, K. J. appl. Phys. 47, 1880–1886 (1976).

    Article  ADS  CAS  Google Scholar 

  22. Nesi, V. & Milton, G. W. J. Mech. Phys. Solids 39, 525–542 (1991).

    Article  ADS  MathSciNet  Google Scholar 

  23. Avellaneda, M. & Milton, G. W. SIAM J. appl. Math. 49, 824–837 (1989).

    Article  MathSciNet  Google Scholar 

  24. Milton, G. W. in Homogenization and Effective Moduli of Materials and Media (eds Erickson, J. L., Kinderlehrer, D., Kohn, R. & Lions, J. L.) 150–175 (Springer, Berlin, 1986).

    Book  Google Scholar 

  25. Hashin, Z. & Shtrickman, S. J. Mech. Phys. Solids 11, 127–140 (1963).

    Article  ADS  MathSciNet  Google Scholar 

  26. Milton, G. J. Mech. Phys. Solids 40, 1105–1137 (1992).

    Article  ADS  MathSciNet  Google Scholar 

  27. Baer, E., Hiltner, A. & Kieth, H. D. Science 235, 1015–1022 (1987).

    Article  ADS  CAS  Google Scholar 

  28. Elliott, S. R. Nature 354, 445–452 (1991).

    Article  ADS  CAS  Google Scholar 

  29. Hancox, N. M. Biology of Bone (Cambridge Univ. Press, 1972).

    Google Scholar 

  30. Currey, J. The Mechanical Adaptations of Bones (Princeton, New Jersey, 1984).

    Book  Google Scholar 

  31. Frasca, P., Harper, R. A. & Katz, J. L. Acta anatom. 95, 122–129 (1976).

    Article  CAS  Google Scholar 

  32. Katz, J. L. J. Biomech. 4, 455–473 (1971).

    Article  CAS  Google Scholar 

  33. Lakes, R. S. & Saha, S. Science 204, 501–503 (1979).

    Article  ADS  CAS  Google Scholar 

  34. Piekarski, K. J. appl. Phys. 41, 215–223 (1970).

    Article  ADS  Google Scholar 

  35. Piekarski, K. & Munro, M. Nature 269, 80–82 (1977).

    Article  ADS  CAS  Google Scholar 

  36. Katz, J. L. Nature 283, 106–107 (1980).

    Article  ADS  CAS  Google Scholar 

  37. Thomas, R. J. in Wood Structure and Composition (ed. Lewin, M. & Goldstein, I. S.) (Marcel Dekker, New York, 1991).

    Google Scholar 

  38. Easterling, K. E., Harrysson, R., Gibson, L. J. & Ashby, M. F. Proc. R. Soc. Lond. A383, 31–41 (1982).

    Article  ADS  Google Scholar 

  39. Lakes, R. S. J. Engng Mater. Technol. 113, 148–155 (1991).

    Article  Google Scholar 

  40. Brezny, R. & Green, D. J. J. Mater. Sci. 25, 4571–4578 (1990).

    Article  ADS  CAS  Google Scholar 

  41. Ilcewicz, L. B., Kennedy, T. C. & Shaar, C. J. Mater. Sci. Lett. 4, 434–438 (1985).

    Article  Google Scholar 

  42. Ilcewicz, L. B., Narasimhan, M. & Wilson, J. B. Engng Fracture Mech. 14, 801–808 (1981).

    Article  CAS  Google Scholar 

  43. Mazars, J., Pijaudier-Cabot, G. & Saouridis, C. Int. J. Fracture 51, 159–173 (1991).

    CAS  Google Scholar 

  44. Mindlin, R. D. Int. J. Solids Structures 1, 265–271 (1965).

    Article  Google Scholar 

  45. Eringen, A. C. in Fracture Vol. 2 (ed. Liebowitz, H.) 621–729 (Academic, New York, 1986).

    Google Scholar 

  46. Pittman, E. in Physics and Chemistry of Porous Media (ed. Johnson D. L. & Sen, P. N.) 1–19 (Am. Inst. Physics, New York, 1984).

    Google Scholar 

  47. Bodig, J. & Jayne, B. A. Mechanics of Wood and Wood Composites (Van Nostrand Reinhold, New York, 1982).

    Google Scholar 

  48. Shutov, F. in Advances in Polymer Science 51—Industrial Developments (Springer, Berlin, 1983).

    Google Scholar 

  49. Fricke, J. (ed.) Aerogels (Springer, Berlin, 1986).

    Google Scholar 

  50. Kistler, J. Nature 127, 741 (1931).

    Article  ADS  CAS  Google Scholar 

  51. Lakes, R. S. Science 235, 1038–1040 (1987).

    Article  ADS  CAS  Google Scholar 

  52. Lakes, R. S. Cell. Polymers 10, 466–469 (1992).

    Google Scholar 

  53. Parkhouse, J. G. Reliability Engng 17, 97–109 (1987).

    Article  Google Scholar 

  54. Ashby, M. F. Acta metall. Mater. 39, 1025–1039 (1991).

    Article  Google Scholar 

  55. Gibson, L. J. Biomech. 18, 317–328 (1985).

    Article  CAS  Google Scholar 

  56. Suzuki, K. & Kikuchi, N. Comput. Methods appl. Mech. Engng 93, 291–318 (1991).

    Article  ADS  Google Scholar 

  57. Ashley, S. Mech. Engng 114, 16–17 (February 1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lakes, R. Materials with structural hierarchy. Nature 361, 511–515 (1993). https://doi.org/10.1038/361511a0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/361511a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing