Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

X-ray crystal structure of arrestin from bovine rod outer segments

Abstract

Retinal arrestin is the essential protein for the termination of the light response in vertebrate rod outer segments. It plays an important role in quenching the light-induced enzyme cascade by its ability to bind to phosphorylated light-activated rhodopsin (P-Rh*). Arrestins are found in various G-protein-coupled amplification cascades. Here we report on the three-dimensional structure of bovine arrestin (relative molecular mass, 45,300) at 3.3 Å resolution. The crystal structure comprises two domains of antiparallel β-sheets connected through a hinge region and one short α-helix on the back of the amino-terminal fold. The binding region for phosphorylated light-activated rhodopsin is located at the N-terminal domain, as indicated by the docking of the photoreceptor to the three-dimensional structure of arrestin. This agrees with the interpretation of binding studies on partially digested and mutated arrestin.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cα-backbone of the four molecules (A, B, C, D) showing their packing in the asymmetric unit.
Figure 2: Structure of molecule B.
Figure 3
Figure 4: Possible coordination of arrestin (molecule B) and the receptor (theoretical model of metarhodopsin II23, Protein Data Bank id: 1boj, entry without loops).

Similar content being viewed by others

References

  1. Kühn, H. Light-regulated binding of rhodopsin kinase and other proteins to cattle photoreceptor membranes. Biochemistry 17, 4289–4395 (1978).

    Google Scholar 

  2. Fung, B. K.-K. & Stryer, L. Photolyzed rhodopsin catalyzes the exchange of GTP for bound GDP in retinal rod outer segments. Proc. Natl Acad. Sci. USA 77, 2500–2504 (1980).

    Article  ADS  CAS  Google Scholar 

  3. Fung, B. K.-K., Hurley, J. B. & Stryer, L. Flow of information in the light-triggered cyclic nucleotide cascade of vision. Proc. Natl Acad. Sci. USA 78, 152–156 (1981).

    Article  ADS  CAS  Google Scholar 

  4. Uchida, S., Wheeler, G. L., Yamazaki, A. & Bitensky, M. W. AGTP-protein activator of phosphodiesterase which forms in response to bleached rhodopsin. J. Cyclic Nucl. Res. 7, 95–104 (1981).

    CAS  Google Scholar 

  5. Vuong, T. M., Chabre, M. & Stryer, L. Millisecond activation of transducin in the cyclic nucleotide cascade of vision. Nature 311, 659–661 (1984).

    Article  ADS  CAS  Google Scholar 

  6. Wilden, U. & Kühn, H. Light-dependent phosphorylation of rhodopsin: number of phosphorylation sites. Biochemistry 21, 3014–3022 (1982).

    Article  CAS  Google Scholar 

  7. Miller, J. L., Fox, D. A. & Litman, B. J. Amplification of phosphodiesterase activation is greatly reduced by rhodopsin phosphorylation. Biochemistry 25, 4983–4988 (1986).

    Article  CAS  Google Scholar 

  8. Wilden, U., Hall, S. W. & Kühn, H. Phosphodiesterase activation by photoexcited rhodopsin is quenched when rhodopsin is phosphorylated and binds the intrinsic 48-kDa protein of rod outer segments. Proc. Natl Acad. Sci. USA 83, 1174–1178 (1986).

    Article  ADS  CAS  Google Scholar 

  9. Wilden, U. Duration and amplitude of the light-induced cGMP hydrolysis in vertebrate photoreceptors are regulated by multiple phosphorylation of rhodopsin and by arrestin binding. Biochemistry 34, 1446–1454 (1995).

    Article  CAS  Google Scholar 

  10. Schleicher, A., Kühn, H. & Hofmann, K. P. Kinetics, binding constant, and activation energy of the 48-kDa protein-rhodopsin complex by extra-metarhodopsin II. Biochemistry 28, 1770–1775 (1989).

    Article  CAS  Google Scholar 

  11. Wilden, U., Wüst, E., Weyand, I. & Kühn, H. Rapid affinity purification of retinal arrestin (48kDa protein) via its light-dependent binding to phosphorylated rhodopsin. FEBS Lett. 207, 292–295 (1986).

    Article  CAS  Google Scholar 

  12. Kleywegt, G. J. Making the most of your search model. CCP4/ESF-EACBM News. Prot. Crystallogr. 32, 32–36 (1996).

    Google Scholar 

  13. Brunger, A. T. X-PLOR, Version 3.1-3.851, A System for X-ray Crystallography and NMR (Yale University, New Haven, CT, 1992–1997).

    Google Scholar 

  14. Shinohara, T.et al. Primary and secondary structure of bovine retinal S antigen (48-kDa). Proc. Natl Acad. Sci. USA 84, 6974–6979 (1987).

    Article  ADS  Google Scholar 

  15. Palczewski, K., Pulvermüller, A., Buczylko, J. & Hofmann, K. P. Phosphorylated rhodopsin and heparin induce similar conformational changes in arrestin. J. Biol. Chem. 266, 18649–18654 (1991).

    CAS  PubMed  Google Scholar 

  16. Gurevich, V. V. & Benovic, J. L. Visual arrestin interaction with rhodopsin. J. Biol. Chem. 268, 11628–11638 (1993).

    CAS  PubMed  Google Scholar 

  17. Gurevich, V. V. & Benovic, J. L. Mechanism of phosphorylation-recognition by visual arrestin and the transition of arrestin into high affinity binding state. Mol. Pharmacol. 51, 161–169 (1997).

    Article  CAS  Google Scholar 

  18. Attwood, T. K.et al. Novel developments with the PRINTS protein fingerprint database. Nucleic Acids Res. 25, 212–216 (1997).

    Article  CAS  Google Scholar 

  19. Xinyu, Z., Palczewski, K. & Ohguro, H. Mechanism of rhodopsin phosphorylation. Biophys. Chem. 56, 183–188 (1995).

    Article  Google Scholar 

  20. Holm, L. & Sander, C. The FSSP database of structurally aligned protein fold families. Nucleic Acids Res. 22, 3600–3609 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Noel, J. P., Hamm, H. E. & Sigler, P. B. The 2.2 Å crystal structure of transducin-α complexed with GTPγS. Nature 366, 654–366 (1993).

    Article  ADS  CAS  Google Scholar 

  22. Lohse, M. J., Benovic, J. L., Codina, J., Caron, M. G. & Lefkowitz, R. J. β-Arrestin: a protein that regulates β-adrenergic receptor function. Science 248, 1547–1550 (1990).

    Article  ADS  CAS  Google Scholar 

  23. Pogozheva, I. D., Lomize, A. L. & Mosberg, H. I. The transmembrane 7-α-bundle of rhodopsin: distance geometry calculation with hydrogen bonding constraints. Biophys. J. 70, 1963–1985 (1997).

    Article  Google Scholar 

  24. Wilden, U., Choe, H.-W., Krafft, B. & Granzin, J. Crystallization and preliminary X-ray analysis of arrestin from bovine rod outer segment. FEBS Lett. 415, 268–270 (1997).

    Article  CAS  Google Scholar 

  25. Collaborative Computational Project, Number4. 1994. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D50, 760–763 (1994).

    Google Scholar 

  26. Jones, T. A., Zou, J. Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A47, 110–119 (1991).

    Article  CAS  Google Scholar 

  27. Evans, S. V. SETOR: hardware lighted three-dimensional solid model representation of macromolecules. J. Mol. Graphics 11, 134–138 (1993).

    Article  CAS  Google Scholar 

  28. Kabsch, W. & Sander, C. Dictionary of protein secondary structure: patter recognition of hydrogen-bonded and geometrical features. Biopolymers 22, 2577–2637 (1983).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Cousin and R. Esser for the arrestin protein preparation from bovine eyes; L. A. Donoso for the arrestin antibodies; U. B. Kaupp for continuous support of the project; K.-P. Hofmann and M. J. Lohse for helpful discussions. This work was funded by a grant from the Deutsche Forschungsgemeinschaft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joachim Granzin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Granzin, J., Wilden, U., Choe, HW. et al. X-ray crystal structure of arrestin from bovine rod outer segments. Nature 391, 918–921 (1998). https://doi.org/10.1038/36147

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/36147

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing