Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Benzodiazepine-induced motor impairment linked to point mutation in cerebeilar GABAA receptor

Abstract

THE selectively outbred alcohol-non-tolerant (ANT) rat line1 is highly susceptible to impairment of postural reflexes by benzodiazepine agonists2 such as diazepam. ANT cerebella are generally devoid3 of diazepam-insensitive high-affinity binding of the benzodiazepine [3H]Ro 15-4513 (refs 4, 5), whereas in non-selected strains such binding marks a granule-cell-specific GABAA (γ-aminobutyric acid) receptor containing the α6 subunit5,6. A critical determinant for diazepam insensitivity of this ‘wild-type’ cerebeilar GABAA receptor is an arginine residue7 in α6 position 100, where other a subunits carry a histidine8. Here we report that the ct6 gene of ANT rats is expressed at wild-type levels but carries a point mutation generating an arginine-to-glutamine substitution at position 100. In consequence, α6(Q 100)β2γ2 receptors show diazepam-mediated potentiation of GABA-activated currents and diazepam-sensitive binding of [3H]Rol5-4513. Our results suggest that cerebeilar motor control may be a distinct behavioural correlate of the a6-subunit-containing GABAA receptor subtype.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Eriksson, K. & Rusi, M. in Development of Animal Models as Pharmacogenetic Tools (eds McClearn, G. E., Deitrich, G. E. & Erwin, G.) 87–117 (US Government Printing Office, Washington DC 1981).

    Google Scholar 

  2. Hellevuo, K., Kiianmaa, K. & Korpi E. R. Pharmac. biochem. Behav. 34, 399–404 (1989).

    Article  CAS  Google Scholar 

  3. Uusi-Oukari, M. & Korpi, E. R. J. Neurochem. 54, 1980–1987 (1990).

    Article  CAS  Google Scholar 

  4. Sieghart, W., Eichinger, A., Richards, J. G. & Möhler, H. J. Neurochem. 48, 46–52 (1987).

    Article  CAS  Google Scholar 

  5. Malminiemi, O. & Korpi, E. R. Eur. J. Pharmac. 169, 53–60 (1989).

    Article  CAS  Google Scholar 

  6. Lüddens, H. et al. Nature 346, 648–651 (1990).

    Article  ADS  Google Scholar 

  7. Wieland, H. A., Lüddens, H. & Seeburg, P. H. J. biol. Chem. 267, 1426–1429 (1992).

    CAS  PubMed  Google Scholar 

  8. Wisden, W. & Seeburg, P. H. Curr. Opin. Neurobiol. 2, 263–269 (1992).

    Article  CAS  Google Scholar 

  9. Mullis, K. B. & Faloona, F. A. Meth. Enzym. 155, 335–356 (1987).

    Article  CAS  Google Scholar 

  10. Sanger, F., Nicklen, S. & Coulson, A. R. Proc. natn. Acad. Sci. U.S.A. 74, 5463–5467 (1977).

    Article  ADS  CAS  Google Scholar 

  11. Powell, L. M. et al. Cell 50, 831–840 (1987).

    Article  CAS  Google Scholar 

  12. Sommer, B., Köhler, M., Sprengel, R. & Seeburg, P. H. Cell 67, 11–19 (1991).

    Article  CAS  Google Scholar 

  13. Uusi-Oukari, M. & Korpi, E. R. Alc. Clin. exp. Res. 15, 241–246 (1991).

    Article  CAS  Google Scholar 

  14. Hamill, O. P., Marty, A., Neher, E., Sakmann, B. & Sigworth, F. J. Pflügers Arch. 391, 85–100 (1981).

    Article  CAS  Google Scholar 

  15. Kleingoor, C., Ewert, M., von Blankenfeld, G., Seeburg, P. H. & Kettenmann, H. Neurosci. Lett. 130, 169–172 (1991).

    Article  CAS  Google Scholar 

  16. Harris, R. A. & Allan, A. FASEB J. 3, 1689–1695 (1989).

    Article  CAS  Google Scholar 

  17. Tuominen, K. & Korpi, E. R. Pharmac. Biochem. Behav. 40, 409–415 (1991).

    Article  CAS  Google Scholar 

  18. Sangameswaran, L. & DeBlas A. L. Proc. natn. Acad. Sci. U.S.A. 82, 5560–5564 (1985).

    Article  ADS  CAS  Google Scholar 

  19. Rothstein, J. D. et al. J. Neurochem. 58, 2102–2115 (1992).

    Article  CAS  Google Scholar 

  20. Vieira, J. & Messing, J. Meth. Enzym. 153, 3–11 (1987).

    Article  CAS  Google Scholar 

  21. Wisden, W., Laurie, D. J., Monyer, H. & Seeburg, P. H. J. Neurosci. 12, 1040–1062 (1992).

    Article  CAS  Google Scholar 

  22. Schall, T. J. et al. Cell 61, 361–370 (1990).

    Article  CAS  Google Scholar 

  23. Chen, C. & Okayama, H. Molec. cell. Biol. 7, 2745–2752 (1987).

    Article  CAS  Google Scholar 

  24. Pritchett, D. B. et al. Nature 338, 582–585 (1989).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korpi, E., Kleingoor, C., Kettenmann, H. et al. Benzodiazepine-induced motor impairment linked to point mutation in cerebeilar GABAA receptor. Nature 361, 356–359 (1993). https://doi.org/10.1038/361356a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/361356a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing