Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Proliferation of oligodendrocyte precursor cells depends on electrical activity in axons

Abstract

OLIGODENDROCYTES myelinate axons in the vertebrate central nervous system. It would, therefore, make sense if axons played a part in controlling the number of oligodendrocytes that develop in a myelinated tract. Although oligodendrocytes themselves normally do not divide, the precursor cells that give rise to them do. Here we show that the proliferation of oligodendrocyte precursor cells in the developing rat optic nerve depends on electrical activity in neighbouring axons, and that this activity-dependence can be circumvented by experimentally increasing the concentration of platelet-derived growth factor, which is present in the optic nerve and stimulates these cells to proliferate in culture. These findings suggest that axonal electrical activity normally controls the production and/or release of the growth factors that are responsible for proliferation of oligodendrocyte precursor cells and thereby helps to control the number of oligodendrocytes that develop in the region.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

References

  1. Salzer, J. L. Bunge, R. P. & Glaser, L. J. Cell Biol. 84, 767–778 (1980).

    Article  CAS  Google Scholar 

  2. Perry, V. H. & Brown, M. C. Bioessays 14, 401–406 (1992).

    Article  CAS  Google Scholar 

  3. Perry, V. H., Brown, M. C. & Lunn, E. R. Eur. J. Neurosci. 3, 102–105 (1991).

    Article  CAS  Google Scholar 

  4. Anderton, B. H., Thorpe, R., Cohen, J., Selvendran, S. & Woodhams, P. J. Neurocytol. 9, 835–844 (1980).

    Article  CAS  Google Scholar 

  5. Riccio, R. V. & Matthews, M. A. Neuroscience 16, 1027–1039 (1985).

    Article  CAS  Google Scholar 

  6. Barres, B. A., Koroshetz, W. J., Swartz, K. J., Chun, L. L. Y., & Corey, D. P. Neuron 4, 507–524 (1990).

    Article  CAS  Google Scholar 

  7. Barres, B. A. et al. Cell 70, 31–46 (1992).

    Article  CAS  Google Scholar 

  8. Yeh, H. J. et al. Cell 64, 209–216 (1991).

    Article  CAS  Google Scholar 

  9. Sasahara, M. et al. Cell 64, 217–227 (1991).

    Article  CAS  Google Scholar 

  10. Richardson, W. D., Pringle, N., Mosley, M. J., Westermark, B. & Dubois-Dalcq, M. Cell 53, 309–319 (1988).

    Article  CAS  Google Scholar 

  11. Pringle, N. et al. EMBO J. 8, 1049–1056 (1989).

    Article  CAS  Google Scholar 

  12. Orkand, R. K., Nicholls, J. G. & Kuffler, S. W. J. Neurophysiol. 29, 788–806 (1966).

    Article  CAS  Google Scholar 

  13. Wheeler, D. D., Boyarsky, L. L. & Brooks, W. H. J. Cell Physiol. 67, 141–148 (1966).

    Article  CAS  Google Scholar 

  14. Weinreich, D. & Hammerschlag, R. Brain Res. 74, 137–142 (1975).

    Article  Google Scholar 

  15. Tauber, H. Waehnedlt, T. V. & Neuhoff, V. Neurosci. Lett. 16, 235–238 (1980).

    Article  CAS  Google Scholar 

  16. Gyllensten, L. & Malmfors, T. J. Embryol exp. Morph. 11, 255–266 (1963).

    CAS  PubMed  Google Scholar 

  17. Currie, J. & Cowan, W. M. J. comp. Neurol. 156, 123–142 (1974).

    Article  CAS  Google Scholar 

  18. DeLong, G. R. & Sidman, R. L. J. comp. Neurol. 118, 205–224 (1962).

    Article  CAS  Google Scholar 

  19. Friedman, S. & Shatz, C. J. Eur. J. Neurosci. 2, 243–253 (1990).

    Article  Google Scholar 

  20. Rasminksky, M. & Sears, T. A. J. Physiol., Lond. 227, 323–350 (1972).

    Article  Google Scholar 

  21. Gratzner, H. G. Science 318, 474–475 (1982).

    Article  ADS  Google Scholar 

  22. Maguad, J. P., Sargent, I. & Mason, D. Y. J. Immun. Meth. 106, 95–100 (1988).

    Article  Google Scholar 

  23. Eisenbarth, G. S., Walsh, F. S. & Nirenburg, M. Proc. natn. Acad. Sci. U.S.A. 76, 4913–4916 (1979).

    Article  ADS  CAS  Google Scholar 

  24. Raff, M. C., Miller, R. H. & Noble, M. Nature 303, 390–396 (1983).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Barres, B., Raff, M. Proliferation of oligodendrocyte precursor cells depends on electrical activity in axons. Nature 361, 258–260 (1993). https://doi.org/10.1038/361258a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/361258a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing