Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Carbon dioxide limitation of marine phytoplankton growth rates

Abstract

THE supply of dissolved inorganic carbon (DIC) is not considered to limit oceanic primary productivity1, as its concentration in sea water exceeds that of other plant macronutrients such as nitrate and phosphate by two and three orders of magnitude, respectively. But the bulk of oceanic new production2 and a major fraction of vertical carbon flux is mediated by a few diatom genera whose ability to use DIG components other than CO2, which comprises < 1% of total DIC3, is unknown4. Here we show that under optimal light and nutrient conditions, diatom growth rate can in fact be limited by the supply of CO2. The doubling in surface water pCO2 levels since the last glaciation from 180 to 355 p.p.m.5,6 could therefore have stimulated marine productivity, thereby increasing oceanic carbon sequestration by the biological pump.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Strickland, J. D. H. in Chemical Oceanography (eds Riley, J. P. & Skirrow, G.) 1, 477 (Academic, London, 1965).

    Google Scholar 

  2. Eppley, R. W. & Petersen, B. J. Nature 282, 677–680 (1979).

    Article  ADS  Google Scholar 

  3. Stumm, W. & Morgan, J. J. Aquatic Chemistry (Wiley-Interscience, New York 1981).

    Google Scholar 

  4. Raven, J. A. Plant Cell Environm. 14, 779–794 (1991).

    Article  CAS  Google Scholar 

  5. Berner, W., Oeschger, H. & Stauffer, B. Radiocarbon 22, 227–235 (1980).

    Article  CAS  Google Scholar 

  6. Neftel, A., Oeschger, H., Schwander, J., Stauffer, B. & Zumbrunn, R. Nature 295, 220–223 (1982).

    Article  ADS  CAS  Google Scholar 

  7. Rau, G. H., Takahashi, T. & Des Marais, D. J. Nature 341, 516–518 (1989).

    Article  ADS  CAS  Google Scholar 

  8. Deuser, W. G. Nature 205, 1069–1071 (1970).

    Article  ADS  Google Scholar 

  9. Degens, E. T., Guillard, R. R. L., Sackett, W. M. & Hellebust, J. A. Deep Sea Res. 15, 1–9 (1968).

    CAS  Google Scholar 

  10. Lazier, J. R. N. & Mann, K. H. Deep Sea Res. 36, 1721–1733 (1989).

    Article  ADS  CAS  Google Scholar 

  11. Gavis, J. & Ferguson, J. F. Limnol. Oceanogr. 20, 211–221 (1975).

    Article  ADS  CAS  Google Scholar 

  12. Raymont, E. G. Plankton and Productivity in the Oceans (Pergamon, Oxford, 1980).

    Google Scholar 

  13. Lax, E. & Synowietz, C. Taschenbuch für Chemiker und Physiker (Springer, Berlin, 1967).

    Google Scholar 

  14. Li, Y. H. & Gregory, S. Geochim. cosmochim. Acta 38, 703–714 (1974).

    Article  ADS  CAS  Google Scholar 

  15. Redfield, A. C. Amer. Sci. 46, 205–221 (1958).

    CAS  Google Scholar 

  16. Monod, J. Recherche sur la Croissance des Cultures Bactériennes (Hermann, Paris, 1942).

    MATH  Google Scholar 

  17. Eppley, R. W. Fish Bull. 70, 1063–1085 (1972).

    Google Scholar 

  18. Raven, J. A. & Johnston, A. M. Limnol. Oceanogr. 36, 1701–1714 (1991).

    Article  ADS  CAS  Google Scholar 

  19. Eppley, R. W., Rogers, J. N. & McCarthy, J. J. Limnol. Oceanogr. 14, 912–920 (1969).

    Article  ADS  CAS  Google Scholar 

  20. Codispoti, L. A., Friederich, G. E., Iverson, R. L. & Hood, D. W. Nature 296, 242–245 (1982).

    Article  ADS  CAS  Google Scholar 

  21. Riebesell, U. & Wolf-Gladrow, D. A. Deep Sea Res. 39, 1085–1102 (1992).

    Article  ADS  CAS  Google Scholar 

  22. Broecker, W. S. Glob. Biogeochem. Cycles 5, 191–192 (1991).

    Article  ADS  CAS  Google Scholar 

  23. Smith, S. V. & Mackenzie, F. T. Glob. Biogeochem. Cycles 5, 189–190 (1991).

    Article  ADS  CAS  Google Scholar 

  24. v.Stosch, H. A. & Drebes, G. Helgol. Wiss. Meeres. 11, 209–257 (1964).

    Article  Google Scholar 

  25. Grasshoff, K., Ehrhardt, M. & Kremling, K. Methods of Seawater Analysis (Basel Verlag, Chemie, Basel, 1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Riebesell, U., Wolf-Gladrow, D. & Smetacek, V. Carbon dioxide limitation of marine phytoplankton growth rates. Nature 361, 249–251 (1993). https://doi.org/10.1038/361249a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/361249a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing