Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Active-centre torsion-angle strain revealed in 1.6 Å-resolution structure of histidine-containing phosphocarrier protein

Abstract

THE histidine-containing phosphocarrier protein (HPr) is a central component of the phosphoenolpyruvate: sugar phosphotransferase system that transports carbohydrates across the cell membrane of bacteria1. A typical phosphotransfer sequence is phosphoenolpyruvate → enzyme I → HPr → enzyme II/IIsugar → sugar. This is thermodynamically favourable owing to the participation of the high-energy phosphoenolpyruvate. We report here the structure of HPr from Streptococcus faecalis determined at 1.6 Å resolution. Remarkable disallowed Ramachandran torsion angles at the active centre, revealed by the X-ray structure, demonstrate a unique example of torsion-angle strain that is probably directly involved in protein function. During phosphorylation, the active-centre torsion-angle strain should facilitate the phosphotransfer reaction by lowering the activation-energy barrier. A recently reported Bacillus subtilis HPr structure2, which represents the phosphorylated state of HPr with no torsion-angle strain, provides direct evidence supporting our hypothesis that torsion-angle strain plays a direct part in the function of HPr. An HPr phosphotransfer cycling mechanism is proposed, based primarily on the structures of HPr and other phosphotransferase system proteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Meadow, N. D., Fox, D. K. & Roseman, S. A. Rev. Biochem. 59, 495–542 (1990).

    Article  Google Scholar 

  2. Herzberg, O. et al. Proc. natn. Acad. Sci. U.S.A. 89, 2499–2503 (1992).

    Article  ADS  CAS  Google Scholar 

  3. Wang, B. C. Meth. Enzy. 115, 90–112 (1985).

    Article  CAS  Google Scholar 

  4. Kalbitzer, H. R. et al. Biochemistry 21, 2879–2885 (1982).

    Article  CAS  Google Scholar 

  5. Hol, W. G. J. Prog. Biophys. molec. Biol. 45, 149–195 (1985).

    Article  CAS  Google Scholar 

  6. Aqvist, J., Luecke, H., Quiocho, F. A. & Warshel, A. Proc. natn. Acad. Sci. U.S.A. 88, 2026–2030 (1991).

    Article  ADS  CAS  Google Scholar 

  7. Sharma, S. et al. Proc. natn. Acad. Sci. U.S.A. 88, 4877–4881 (1991).

    Article  ADS  CAS  Google Scholar 

  8. Ramakrishnan, C. & Ramachandran, G. N. Biophys. J. 5, 909–933 (1965).

    Article  ADS  CAS  Google Scholar 

  9. Jones, T. A. J. appl. Crystallogr. 11, 268–272 (1978).

    Article  CAS  Google Scholar 

  10. Fersht, A. R. et al. Nature 314, 235–238 (1985).

    Article  ADS  CAS  Google Scholar 

  11. van Dijk, A. A., de Lange, L. C., Bachovchin, W. W. & Robillard, G. T. Biochemistry 29, 8164–8171 (1990).

    Article  CAS  Google Scholar 

  12. Herzberg, O. & Moult, J. Proteins: Struct. Funct. Genet. 11, 223–229 (1991).

    Article  CAS  Google Scholar 

  13. Liao, D. et al. Biochemistry 30, 9583–9594 (1991).

    Article  CAS  Google Scholar 

  14. Worthylake, D. et al. Proc. natn. Acad. Sci. U.S.A. 88, 10382–10386 (1991).

    Article  ADS  CAS  Google Scholar 

  15. Stone, M. J. et al. Biochemistry 31, 4394–4406 (1992).

    Article  CAS  Google Scholar 

  16. Messerschmidt, A. & Pflugrath, J. W. J. appl. Crystallogr. 20, 306–315 (1987).

    Article  CAS  Google Scholar 

  17. Dickerson, R. E., Weinzierl, J. E. & Palmer, R. A. Acta crystallogr. B24, 997–1003 (1968).

    Article  CAS  Google Scholar 

  18. Evans, S. V. J. molec. Graphics (in the press).

  19. Wittekind, M. G., Reizer, J. & Klevit, R. E. Biochemistry 29, 7191–7200 (1990).

    Article  CAS  Google Scholar 

  20. Klevit, R. E. & Waygood, E. B. Biochemistry 25, 7774–7781 (1986).

    Article  CAS  Google Scholar 

  21. Hammen, P., Waygood, E. B. & Klevit, R. E. Biochemistry 30, 11842–11850 (1991).

    Article  CAS  Google Scholar 

  22. Kalbitzer, H. R., Neidig, K.-P. & Hengstenberg, W. Biochemistry 30, 11186–11192 (1991).

    Article  CAS  Google Scholar 

  23. van Nuland, N. et al. Eur. J. Biochem. 203, 483–491 (1992).

    Article  CAS  Google Scholar 

  24. El-Kabbani, O. A. L., Waygood, E. B. & Delbaere, L. T. J. J. biol. Chem. 262, 12926–12929 (1987).

    CAS  PubMed  Google Scholar 

  25. Brünger, A. T., Kuriyan, J. & Karplus, M. Science 235, 458–460 (1987).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jia, Z., Vandonselaar, M., Quail, J. et al. Active-centre torsion-angle strain revealed in 1.6 Å-resolution structure of histidine-containing phosphocarrier protein. Nature 361, 94–97 (1993). https://doi.org/10.1038/361094a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/361094a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing