Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Metal ion catalysis in the Tetrahymena ribozyme reaction

Abstract

ALL catalytic RNAs (ribozymes) require or are stimulated by divalent metal ions, but it has been difficult to separate the contribution of these metal ions to formation of the RNA tertiary structure1 from a more direct role in catalysis. The Tetrahymena ribozyme catalyses cleavage of exogenous RNA2,3 or DNA4,5 substrates with an absolute requirement for Mg2+ or Mn2+ (ref. 6). A DNA substrate, in which the bridging 3′ oxygen atom at the cleavage site is replaced by sulphur, is cleaved by the ribozyme about 1,000 times more slowly than the corresponding unmodified DNA substrate when Mg2+ is present as the only divalent metal ion. But addition of Mn2+ or Zn2+ to the reaction relieves this negative effect, with the 3′ S–P bond being cleaved nearly as fast as the 3′ O–P bond. Considering that Mn2+ and Zn2+ coordinate sulphur more strongly than Mg2+ does7,8, these results indicate that the metal ion contributes directly to catalysis by coordination to the 3′ oxygen atom in the transition state, presumably stabilizing the developing negative charge on the leaving group. We conclude that the Tetrahymena ribozyme is a metalloenzyme, with mechanistic similarities to several protein enzymes9–12.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Celander, D. W. & Cech, T. R. Science 25, 401–407 (1991).

    Article  ADS  Google Scholar 

  2. Zaug, A. J., Been, M. D. & Cech, T. R. Nature 324, 429–433 (1986).

    Article  ADS  CAS  Google Scholar 

  3. Zaug, A. J., Grosshans, C. A. & Cech, T. R. Biochemistry 27, 8924–8930 (1988).

    Article  CAS  Google Scholar 

  4. Herschlag, D. & Cech, T. R. Nature 344, 405–409 (1990).

    Article  ADS  CAS  Google Scholar 

  5. Robertson, D. L. & Joyce, G. F. Nature 344, 467–468 (1990).

    Article  ADS  CAS  Google Scholar 

  6. Grosshans, C. A. & Cech, T. R. Biochemistry 28, 6888–6894 (1989).

    Article  CAS  Google Scholar 

  7. Jaffe, E. K. & Cohn, M. J. biol. Chem. 253, 4823–4825 (1978).

    CAS  PubMed  Google Scholar 

  8. Pecoraro, V. L., Hermes, J. D. & Cleland, W. W. Biochemistry 23, 5262–5271 (1984).

    Article  CAS  Google Scholar 

  9. Freemont, P. S., Friedman, J. M., Beese, L. S., Sanderson, M. R. & Steitz, T. A. Proc. natn. Acad. Sci. U.S.A. 85, 8924–8928 (1988).

    Article  ADS  CAS  Google Scholar 

  10. Beese, L. S. & Steitz, T. A. EMBO J. 10, 25–33 (1991).

    Article  CAS  Google Scholar 

  11. Kim, E. E. & Wyckoff, H. W. J. molec. Biol. 218, 449–464 (1991).

    Article  CAS  Google Scholar 

  12. Hough, E. et al. Nature 338, 357–360 (1989).

    Article  ADS  CAS  Google Scholar 

  13. Davies, R. W., Waring, R. B., Ray, J. A., Brown, T. A. & Scazzocchio, C. Nature 300, 719–724 (1982).

    Article  ADS  CAS  Google Scholar 

  14. Bass, B. L. & Cech, T. R. Nature 308, 820–826 (1984).

    Article  ADS  CAS  Google Scholar 

  15. Herschlag, D. & Cech, T. R. Biochemistry 29, 10172–10180 (1990).

    Article  CAS  Google Scholar 

  16. Michel, F., Hanna, M., Green, R., Bartel, D. P. & Szostak, J. W. Nature 342, 391–395 (1989).

    Article  ADS  CAS  Google Scholar 

  17. McSwiggen, J. A. & Cech, T. R. Science 244, 679–683 (1989).

    Article  ADS  CAS  Google Scholar 

  18. Rajagopal, J., Doudna, J. A. & Szostak, J. W. Science 244, 692–694 (1989).

    Article  ADS  CAS  Google Scholar 

  19. Herschlag, D. & Cech, T. R. Biochemistry 29, 10159–10171 (1990).

    Article  CAS  Google Scholar 

  20. Pyle, A. M. & Cech, T. R. Nature 350, 628–631 (1991).

    Article  ADS  CAS  Google Scholar 

  21. Bevilacqua, P. C. & Turner, D. H. Biochemistry 30, 10632–10640 (1991).

    Article  CAS  Google Scholar 

  22. Cosstick, R. & Vyle, J. S. Nucleic Acids Res. 8, 2295–2300 (1990).

    Google Scholar 

  23. Knowles, J. R. A. Rev. Biochem. 49, 877–919 (1980).

    Article  CAS  Google Scholar 

  24. Eckstein, F. A. Rev. Biochem. 54, 367–402 (1985).

    Article  CAS  Google Scholar 

  25. Frey, P. A. Adv. Enzym. rel. Areas molec. Biol. 62, 119–201 (1989).

    CAS  Google Scholar 

  26. Herschlag, D., Piccirilli, J. A. & Cech, T. R. Biochemistry 30, 4844–4854 (1991).

    Article  CAS  Google Scholar 

  27. Pyle, A. M., McSwiggen, J. A. & Cech, T. R. Proc. natn. Acad. Sci. U.S.A. 87, 8187–8191 (1990).

    Article  ADS  CAS  Google Scholar 

  28. Vyle, J. S., Connolly, B. A., Kemp, D. & Cosstick, R. Biochemistry 31, 3012–3018 (1992).

    Article  CAS  Google Scholar 

  29. Milstien, S. & Fife, T. H. J. Am. chem. Soc. 89, 5820–5826 (1967).

    Article  CAS  Google Scholar 

  30. Nakamaye, K. L., Gish, G., Eckstein, F. & Vosberg, H.-P. Nucleic Acids Res. 16, 9947–9958 (1988).

    Article  CAS  Google Scholar 

  31. Herschlag, D. & Jencks, W. P. J. Am. chem. Soc. 109, 4665–4674 (1987).

    Article  CAS  Google Scholar 

  32. Browne, K. A. & Bruice, T. C. J. Am. chem. Soc. 114, 4951–4958 (1992).

    Article  CAS  Google Scholar 

  33. Dahm, S. & Uhlenbeck, O. C. Biochemistry 30, 9464–9469 (1991).

    Article  CAS  Google Scholar 

  34. Koizumi, M. & Ohtsuka, E. Biochemistry 30, 5145–5150 (1991).

    Article  CAS  Google Scholar 

  35. Perreault, J.-P., Labuda, D., Usman, N., Yang, J.-H. & Cedergren, R. Biochemistry 30, 4020–4025 (1991).

    Article  CAS  Google Scholar 

  36. Cech, T. R., Herschlag, D., Piccirilli, J. A. & Pyle, A. M. J. biol. Chem. 267, 17479–17482 (1992).

    CAS  PubMed  Google Scholar 

  37. Guerrier-Takada, C., Haydock, K., Allen, L. & Altman, S. Biochemistry 25, 1509–1515 (1986).

    Article  CAS  Google Scholar 

  38. Stezowski, J. J., Countryman, R. & Hoard, J. L. Inorg. Chem. 12, 1749–1754 (1973).

    Article  CAS  Google Scholar 

  39. Pyle, A. M., Murphy, F. L. & Cech, T. R. Nature 358, 123–128 (1992).

    Article  ADS  CAS  Google Scholar 

  40. Yarus, M., Illangesekare, M. & Christian, E. J. molec. Biol. 222, 995–1012 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Piccirilli, J., Vyle, J., Caruthers, M. et al. Metal ion catalysis in the Tetrahymena ribozyme reaction. Nature 361, 85–88 (1993). https://doi.org/10.1038/361085a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/361085a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing