Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Regions involved in the opening of CIC-2 chloride channel by voltage and cell volume

Abstract

REGULATION of cell volume is essential for every cell and is accomplished by the regulated loss or gain of intracellular ions or other osmolytes1–4. Regulatory volume decrease often involves the parallel activation of potassium and chloride channels5–10. Overexpression of P-glycoprotein leads to volume-activated Cl currents11,12 but its physiological importance for volume regulation is unclear13. CIC-2 is a ubiquitously expressed Cl channel14 activatable by non-physiologically strong hyperpolarization. We now show that CIC-2 can be activated by extracellular hypotonicity, which suggests that it has a widespread role in volume regulation. Domains necessary for activation by both voltage and volume are localized to the amino terminus. Mutations in an ‘essential’ region lead to constitutively open channels unresponsive to medium tonicity, whereas deletions in a ‘modulating’ region produce partially opened channels responsive to both hypo- and hypertonicity. These domains can be transplanted to different regions of the protein without loss of function.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hoffmann, E. K. & Simonsen, L. O. Physiol. Rev. 69, 315–382 (1989).

    Article  CAS  Google Scholar 

  2. Pierce, S. K. & Politis, A. D. A. Rev. Physiol. 52, 27–42 (1990).

    Article  CAS  Google Scholar 

  3. Montrose-Rafizadeh, C. & Guggino, W. B. A. Rev. Physiol. 52, 761–772 (1990).

    Article  CAS  Google Scholar 

  4. Grinstein, S. & Foskett, J. K. A. Rev. Physiol. 52, 399–414 (1990).

    Article  CAS  Google Scholar 

  5. Worrell, R. T., Butt, A. G., Cliff, W. H. & Frizzell, R. A. Am. J. Physiol. 256, C1111–C1119 (1989)

    Article  CAS  Google Scholar 

  6. Kunzelmann, K., Kubitz, R., Grolik, M., Warth, R. & Greger, R. Pflügers Arch. 421, 238–246 (1992).

    Article  CAS  Google Scholar 

  7. Weiss, H. & Lang, F. J. Membrane Biol. 126, 109–114 (1992).

    Article  CAS  Google Scholar 

  8. Haddad, P., Beck, J. S., Boyer, J. L. & Graf, J. Am. J. Physiol. 261, G340–G348 (1991).

    CAS  PubMed  Google Scholar 

  9. Chan, H. C. & Nelson, D. J. Science 257, 669–671 (1992).

    Article  ADS  CAS  Google Scholar 

  10. Christensen, O. & Hoffmann, E. K. J. Membrane Biol. 129, 13–36 (1992).

    Article  CAS  Google Scholar 

  11. Valverde, M. A. et al. Nature 355, 830–833 (1992).

    Article  ADS  CAS  Google Scholar 

  12. Gill, D. B. et al. Cell 71, 23–32 (1992).

    Article  CAS  Google Scholar 

  13. McEwan, G. T. A., Hunter, J., Hirst, B. H. & Simmons, N. L. FEBS Lett. 304, 233–236 (1992).

    Article  CAS  Google Scholar 

  14. Thiemann, A., Gründer, S., Pusch, M. & Jentsch, T. J. Nature 356, 57–60 (1992).

    Article  ADS  CAS  Google Scholar 

  15. Jentsch, T. J., Steinmeyer, K. & Schwarz, G. Nature 348, 510–514 (1990).

    Article  ADS  CAS  Google Scholar 

  16. Steinmeyer, K., Ortland, C. & Jentsch, T. J. Nature 354, 301–304 (1991).

    Article  ADS  CAS  Google Scholar 

  17. Chou, P. Y. & Fasman, G. D. A. Rev. Biochem. 47, 251–276 (1978).

    Article  CAS  Google Scholar 

  18. Bauer, C. K., Steinmeyer, K., Schwarz, J. R. & Jentsch, T. J. Proc. natn. Acad Sci. U.S.A. 88, 11052–11056 (1991).

    Article  ADS  CAS  Google Scholar 

  19. Armstrong, C. M. & Benzanilla, F. J. gen. Physiol. 70, 567–590 (1977).

    Article  CAS  Google Scholar 

  20. Hoshi, T., Zagotta, W. N. & Aldrich, R. W. Science 250, 533–538 (1990).

    Article  ADS  CAS  Google Scholar 

  21. Zagotta, W. N., Hoshi, T. & Aldrich, R. W. Science 250, 568–571 (1990).

    Article  ADS  CAS  Google Scholar 

  22. Ruppersberg, J. P., Frank, R., Pongs, O. & Stocker, M. Nature 353, 657–660 (1991).

    Article  ADS  CAS  Google Scholar 

  23. Ruppersberg, J. P. et al. Nature 352, 711–714 (1991).

    Article  ADS  CAS  Google Scholar 

  24. Dubinsky, W. P., Mayorga-Wark, O. & Schultz, S. G. Proc natn. Acad. Sci. U.S.A. 89, 1770–1774 (1992).

    Article  ADS  CAS  Google Scholar 

  25. Foster, C. D., Chung, S., Zagotta, W. N., Aldrich, R. W. & Levitan, I. B. Neuron 9, 229–236 (1992).

    Article  CAS  Google Scholar 

  26. Toro, L., Stefani, E. & Latorre, R. Neuron 9, 237–245 (1992).

    Article  CAS  Google Scholar 

  27. Colman, A. in Transcription and Translation (eds Hames, B. D & Higgins, S. J.) 271–302 (IRL. Oxford. 1984).

    Google Scholar 

  28. Higuchi, R. in PCR Technology (ed. Erlich, H. A.) 61–70 (Stockton, New York, 1989).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gründer, S., Thiemann, A., Pusch, M. et al. Regions involved in the opening of CIC-2 chloride channel by voltage and cell volume. Nature 360, 759–762 (1992). https://doi.org/10.1038/360759a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/360759a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing