Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The life span of the biosphere revisited

Abstract

A DECADE ago, Lovelock and Whitfield1 raised the question of how much longer the biosphere can survive on Earth. They pointed out that, despite the current fossil-fuel induced increase in the atmospheric CO2 concentration, the long-term trend should be in the opposite direction: as increased solar luminosity warms the Earth, silicate rocks should weather more readily, causing atmospheric CO2 to decrease. In their model1, atmospheric CO2 falls below the critical level for C3 photosynthesis, 150 parts per million (p.p.m.), in only 100 Myr, and this is assumed to mark the demise of the biosphere as a whole. Here, we re-examine this problem using a more elaborate model that includes a more accurate treatment of the greenhouse effect of CO2 (refs 2–4), a biologically mediated weathering parameterization, and the realization that C4 photosynthesis can persist to much lower concentrations of atmospheric CO2(<10 p.p.m.)5,6. We find that a C4-plant-based biosphere could survive for at least another 0.9 Gyr to 1.5 Gyr after the present time, depending respectively on whether CO2 or temperature is the limiting factor. Within an additional 1 Gyr, Earth may lose its water to space, thereby following the path of its sister planet, Venus.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

References

  1. Lovelock, J. E. & Whitfield, M. Nature 296, 561–563 (1982).

    Article  ADS  CAS  Google Scholar 

  2. Kasting, J. F. & Ackerman, T. P. Science 234, 1383–1385 (1986).

    Article  ADS  CAS  Google Scholar 

  3. Kasting, J. F. Paleogeogr. Paleoclimat. Paleoecol. 75, 83–95 (1989).

    Article  ADS  CAS  Google Scholar 

  4. Kasting, J. F., Whitfield, D. P., & Reynolds, R. T. Icarus (in the press).

  5. Heath, O. V. S. The Physiological Aspects of Photosynthesis (Stanford Univ. Press, (1969).

    Google Scholar 

  6. Pearcy, R. W. & Ehleringer, J. Plant Cell Envir. 7, 1–13 (1984).

    Article  CAS  Google Scholar 

  7. Newman, M. J. & Rood, R. T. Science 198, 1035–1037 (1977).

    Article  ADS  CAS  Google Scholar 

  8. Gough, D. O. Solar Phys. 74, 21–34 (1981).

    Article  ADS  CAS  Google Scholar 

  9. Sackman, I.-J., Boothroyd, A. I. & Fowler, W. A. Astrophys. J. 360, 727–736 (1990).

    Article  ADS  Google Scholar 

  10. Walker, J. C. G., Hays, P. B. & Kasting, J. F. J. geophys. Res. 86, 9776–9782 (1981).

    Article  ADS  CAS  Google Scholar 

  11. Caldeira, K. Geology 19, 204–206 (1991).

    Article  ADS  CAS  Google Scholar 

  12. Manabe, S. & Wetherald, R. T. J. atmos. Sci. 24, 241–259 (1967).

    Article  ADS  CAS  Google Scholar 

  13. Sillen, L. G. in Oceanography (ed. Sears, M.) 549–581 (Am. Assoc. Adv. Sci., Washington DC. 1961).

    Google Scholar 

  14. Stumm, W. & Morgan, J. J. Aquatic Chemistry (Wiley, New York, 1981).

    Google Scholar 

  15. Miller, A. G., Turpin, D. H. & Canvin, D. T. Plant Physiol. 75, 1064–1070 (1984).

    Article  CAS  Google Scholar 

  16. Rossow, W. B., Henderson-Sellers, A. & Weinreich, S. K. Science 217, 1245–1247 (1982).

    Article  ADS  CAS  Google Scholar 

  17. Brock, T. D. Science 230, 132–138 (1985).

    Article  ADS  CAS  Google Scholar 

  18. Baross, J. A. & Deming, J. W. Nature 303, 423–426 (1983).

    Article  ADS  CAS  Google Scholar 

  19. Stetter, K. O. in Thermophiles: General, Molecular, and Applied Microbiology (ed. Brock, T. D.) 39–74 (Wiley, New York, 1986).

    Google Scholar 

  20. Kasting, J. F. Icarus 74, 472–494 (1988).

    Article  ADS  CAS  Google Scholar 

  21. Watson, A. J., Donahue, T. M. & Walker, J. C. G. Icarus 48, 150–166 (1981).

    Article  ADS  CAS  Google Scholar 

  22. Sleep, N. H., Zahnle, K. J., Kasting, J. F. & Morowitz, H. J. Nature 342, 139–142 (1989).

    Article  ADS  CAS  Google Scholar 

  23. Chameides, W. L. J. geophys. Res. 89, 4739–4755 (1984).

    Article  ADS  CAS  Google Scholar 

  24. Blum, A. & Lasaga, A. C. Nature 331, 431–433 (1988).

    Article  ADS  CAS  Google Scholar 

  25. Wogelius, R. A. & Walther, J. V. Geochim. cosmochim. Acta 55, 943–954 (1991).

    Article  ADS  CAS  Google Scholar 

  26. Lagache, M. Bull. Soc. Franc. Miner. Crist. 88, 223–253 (1965).

    CAS  Google Scholar 

  27. Lagache, M. Geochim. cosmochim. Acta 40, 157–161 (1976).

    Article  ADS  CAS  Google Scholar 

  28. Volk, T. Am. J. Sci. 287, 763–779 (1987).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Caldeira, K., Kasting, J. The life span of the biosphere revisited. Nature 360, 721–723 (1992). https://doi.org/10.1038/360721a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/360721a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing