Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Removal of sulphur from the marine boundary layer by ozone oxidation in sea-salt aerosols

Abstract

THE oxidation of sulphur dioxide to sulphate in the marine boundary layer (MBL) is an important pathway in the global sulphur cycle. Oxidation by ozone in the aqueous phase is an important process in cloud droplets1 but has not generally been thought to be significant in the clear air of the MBL. Yet the lower part of the MBL contains abundant sea-salt aerosol particles, which are largely water of sufficiently high pH (ref. 2) to support ozone oxidation of SO2 to sulphate. We have argued previously3 that 5–25% of the total non-sea-salt sulphate (n.s.s. SO2−4) observed in the MBL may be formed by this mechanism; here we assess its contribution to the cycling of sulphur in (and particularly its removal from) the MBL. We show that, owing to the effects of mass transfer, the n.s.s. SO2−4 so generated will be predominantly associated with particles of 2–9 μm diameter, and will accordingly dry-deposit at a rapid rate. Because part of the dimethyl sulphide (DMS) emitted by marine organisms is converted to SO2 in the MBL, this additional removal pathway for sulphur may markedly reduce the proposed feedback4 between greenhouse warming, oceanic DMS emissions and sulphate haze albedo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Seinfeld, J. H. Atmospheric Chemistry and Physics of Air Pollution (Wiley, New York 1986).

    Google Scholar 

  2. Winkler, P. in Chemistry of Multiphase Atmospheric Systems (ed. Jaeschke, W.) 269–298 (Springer, Heidelberg, 1986).

    Book  Google Scholar 

  3. Sievering, H. et al. Atmos. Envir. A25, 1479–1487 (1991).

    Article  Google Scholar 

  4. Charlson, R. J., Lovelock, J. E., Andreae, M. O. & Warren, S. G. Nature 326, 655–661 (1987).

    Article  ADS  CAS  Google Scholar 

  5. Gravenhorst, G. Atmos. Envir. 12, 707–713 (1978).

    Article  CAS  Google Scholar 

  6. Prospero, J. M. & Savoie, D. L. AEROCE Scientific Results from Phase I, 1988–90 (Rossenstiel School of Marine & Atmos. Sci., Univ. of Miami, 1991).

    Google Scholar 

  7. Sievering H., Ennis, G. & Gorman, E. Global biogeochem. Cycles 4, 395–405 (1990).

    Article  ADS  CAS  Google Scholar 

  8. Pszenny, A. A. P., Artz, R. S., Boatman, J. F. & Galloway, J. N. Global biogeochem. Cycles 4, 121–132 (1990).

    Article  ADS  CAS  Google Scholar 

  9. Kim, Y., Sievering, H. & Boatman, J. F. Global biogeochem. Cycles 4, 165–178 (1990).

    Article  ADS  Google Scholar 

  10. Luria, M. and Sievering, H. Atmos. Envir. A25, 1489–1496 (1991).

    Article  Google Scholar 

  11. Hoppel, W. A., Fitzgerald, J. W., Frick, G. M., Larson, R. E. & Mack, E. J. J. geophys. Res. 95, 3659–3686 (1990).

    Article  ADS  Google Scholar 

  12. Sievering, H. et al. in Proc. 5th IPSASEP Conf. Richland, July, 1991 (eds Schwartz, S. & Slinn, W. G. N.) (in the press).

    Google Scholar 

  13. Schwartz, S. in Chemistry of Multiphase Atmospheric Systems (ed. Jaeschke, W.) 415–471 (Springer, Heidelberg, 1986).

    Book  Google Scholar 

  14. Sahni, D. J. nucl. Energy 20, 915–920 (1966).

    CAS  Google Scholar 

  15. Luria, M. et al. Global biogeochem. Cycles 4, 381–394 (1990).

    Article  ADS  CAS  Google Scholar 

  16. Ray, J. D., Van Valin, C. C. Luria, M. & Boatman, J. F. Global biogeochem. Cycles 4, 201–214 (1990).

    Article  ADS  CAS  Google Scholar 

  17. Fitzgerald, J. W. Appl. Optics 28, 3534–3538 (1989).

    Article  ADS  CAS  Google Scholar 

  18. Hänel, F. Adv. Geophys. 19, 73–188 (1976).

    Article  ADS  Google Scholar 

  19. Gorman, E. Mass Transfer Limitation of S(IV) and Ozone in Coarse-Mode Aerosol Particles (Center for Environ. Sciences, Univ. of Colorado, 1992).

    Google Scholar 

  20. Slinn, W. G. N. in Precip. Scav., Dry Deposition, and Resusp., Vol. 2 (eds Pruppacher, H. R., Semonin, R. G. & Slinn, W. G. N.) 1361–1416 (Elsevier, New York 1983).

    Google Scholar 

  21. Chameides W. L. & Stetson, A. W. J. geophys. Res. (in the press).

  22. Kopcewicz, B. et al. Atmos. Res. 26, 245–271 (1991).

    Article  CAS  Google Scholar 

  23. Andreae, M. O. et al. Science 232, 1620–1623 (1986).

    Article  ADS  CAS  Google Scholar 

  24. Sievering, H. J. geophys. Res. 89, 9679–9681 (1984).

    Article  ADS  CAS  Google Scholar 

  25. Slinn, S. A. & Slinn, W. G. N. Atmos. Envir. 14, 1013–1016 (1980).

    Article  Google Scholar 

  26. Luria, M. et al. Atmos. Envir. 23, 139–147 (1989).

    Article  CAS  Google Scholar 

  27. Leck, G. & Rodhe, H. J. atmos. Chem. 12, 63–86 (1991).

    Article  CAS  Google Scholar 

  28. Blanchard, D. & Woodcock, A. H. N. Y. Acad. Sci. 338, 330–347 (1980).

    Article  ADS  Google Scholar 

  29. Zhuang, G., Yi, Z., Duce, R. A. & Brown, P. Nature 355, 537–539 (1992).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sievering, H., Boatman, J., Gorman, E. et al. Removal of sulphur from the marine boundary layer by ozone oxidation in sea-salt aerosols. Nature 360, 571–573 (1992). https://doi.org/10.1038/360571a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/360571a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing