Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Phase behaviour of metastable water

Abstract

THE metastable extension of the phase diagram of liquid water exhibits rich features that manifest themselves in the equilibrium properties of water. For example, the density maximum at 4 °C and the minimum in the isothermal compressibility at 46 °C are thought to reflect the presence of singularities in the behaviour of thermodynamic quantities occurring in the supercooled region1 2. The 'stability–limit conjecture'3–5 suggests that these thermodynamic anomalies arise from a single limit of mechanical stability (spinodal line), originating at the liquid–gas critical point, which determines the limit of both superheating at high temperatures and supercooling at low temperatures. Here we present a comprehensive series of molecular dynamics simulations which suggest that, instead, the supercooling anomalies are caused by a newly identified critical point, above which the two metastable amorphous phases of ice (previously shown to be separated by a line of first-order transitions6,7) become indistinguishable. The two amorphous ice phases are thus incorporated into our understanding of the liquid state, providing a more complete picture of the metastable and stable behaviour of water.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Angell, C. A. in Water: A Comprehensive Treatise (ed. Franks, F.) Vol. 7, 1–81 (Plenum, New York, 1982).

    Google Scholar 

  2. 2

    Lang, E. W. & Lüdemann, H.-D. Angew. Chem. int. Ed. Engl. 21, 315–329 (1982).

    Article  Google Scholar 

  3. 3

    Speedy, R. J. & Angell, C. A. J. chem. Phys. 65, 851–858 (1976).

    ADS  CAS  Article  Google Scholar 

  4. 4

    Speedy, R. J. J. Phys. Chem. 86, 982–991 (1982).

    CAS  Article  Google Scholar 

  5. 5

    Speedy, R. J. J. phys. Chem. 86, 3002–3005 (1982).

    CAS  Article  Google Scholar 

  6. 6

    Mishima, O., Calvert, L. D. & Whalley, E. Nature 310, 393–395 (1984).

    ADS  CAS  Article  Google Scholar 

  7. 7

    Mishima, O., Calvert, L. D. & Whalley, E. Nature 314, 76–78 (1985).

    ADS  CAS  Article  Google Scholar 

  8. 8

    Gunton, J. D., San Miguel, M. & Sahni, P. S. in Phase Transitions and Critical Phenomena (eds Domb, C. & Lebowitz, J. L.) 267–482 (Academic, London, 1983).

    Google Scholar 

  9. 9

    Compagner, A. Physica 72, 115–122 (1974).

    ADS  Article  Google Scholar 

  10. 10

    Debenedetti, P. G. & D'Antonio, M. C. J. chem. Phys. 84, 3339–3345 (1986).

    ADS  CAS  Article  Google Scholar 

  11. 11

    Debenedetti, P. G. & D'Antonio, M. C. Am. Inst. chem. Eng. J. 34, 447–455 (1988).

    CAS  Article  Google Scholar 

  12. 12

    Debenedetti, P. G., Raghaven, V. S. & Borick, S. S. J. phys. Chem. 95, 4540–4551 (1991).

    CAS  Article  Google Scholar 

  13. 13

    Green, J. L., Durben, D. J., Wolf, G. H. & Angell, C. A. Science 249, 649–652 (1990).

    ADS  CAS  Article  Google Scholar 

  14. 14

    Henderson, S. J. & Speedy, R. J. J. phys. Chem. 91, 3062–3068 (1987).

    CAS  Article  Google Scholar 

  15. 15

    Stillinger, F. H. & Rahman, A. J. chem. Phys. 60, 1545–1557 (1974).

    ADS  CAS  Article  Google Scholar 

  16. 16

    Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. & Klein, M. L. J. chem. Phys. 79, 926–935 (1983).

    ADS  CAS  Article  Google Scholar 

  17. 17

    Berendsen, H. J. C., Grigera, J. R. & Straatsma, T. P. J. phys. Chem. 91, 6269–6271 (1987).

    CAS  Article  Google Scholar 

  18. 18

    Striemann, L. thesis, Univ. of Dortmund (1992).

  19. 19

    Bellissent-Funel, M.-C., Teixeira, J. & Bosio, L. J. chem. Phys. 87, 2231–2235 (1987).

    ADS  CAS  Article  Google Scholar 

  20. 20

    Whalley, E., Klug, D. D. & Handa, Y. P. Nature 342, 782–783 (1989).

    ADS  CAS  Article  Google Scholar 

  21. 21

    Angell, C. A., Shuppert, J. & Tucker, J. C. J. phys. Chem. 77, 3092–3099 (1973).

    CAS  Article  Google Scholar 

  22. 22

    Stanley, H. E. & Teixeira, J. J. chem. Phys. 73, 3404–3422 (1980).

    ADS  MathSciNet  CAS  Article  Google Scholar 

  23. 23

    Sciortino, F., Poole, P., Stanley, H. E. & Havlin, S. Phys. Rev. Lett. 64, 1686–1689 (1990).

    ADS  CAS  Article  Google Scholar 

  24. 24

    Hallbrucker, A., Mayer, E. & Johari, G. P. Phil. Mag. B60, 179–187 (1989).

    CAS  Article  Google Scholar 

  25. 25

    Speedy, R. J. J. phys. Chem. 96, 2322–2325 (1992).

    CAS  Article  Google Scholar 

  26. 26

    Dore, J. in Correlations and Connectivity (eds Stanley, H. E. & Ostrowsky, N.) 188–197 (Kluwer, Dordrecht, 1990).

    Book  Google Scholar 

  27. 27

    Stillinger, F. H. & Weber, T. A. J. chem. Phys. 68, 3837–3844 (1978).

    ADS  CAS  Article  Google Scholar 

  28. 28

    Sciortino, F., Geiger, A. & Stanley, H. E. Nature 354, 218–221 (1991).

    ADS  CAS  Article  Google Scholar 

  29. 29

    Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., DiNola, A. & Haak, J. R. J. phys. Chem. 81, 3684–3690 (1984).

    CAS  Article  Google Scholar 

  30. 30

    Chowdhury, M. R., Dore, J. C. & Wenzel, J. T. J. non-cryst. Solids 53, 247–265 (1982).

    ADS  CAS  Article  Google Scholar 

  31. 31

    Tse, J. S. & Klein, M. L. Phys. Rev. Lett. 58, 1672–1675 (1987).

    ADS  CAS  Article  Google Scholar 

  32. 32

    Zhelezni, B. V. Russ. J. phys. Chem. 43, 1311–1312 (1969).

    Google Scholar 

  33. 33

    Fine, R. A. & Millero, F. J. J. chem. Phys. 59, 5529–5536 (1973).

    ADS  CAS  Article  Google Scholar 

  34. 34

    Haar, L., Gallagher, J. S. & Kell, G. NBS/NRC Steam Tables (Hemisphere, Washington DC, 1985).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Poole, P., Sciortino, F., Essmann, U. et al. Phase behaviour of metastable water. Nature 360, 324–328 (1992). https://doi.org/10.1038/360324a0

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing