Abstract
THE metastable extension of the phase diagram of liquid water exhibits rich features that manifest themselves in the equilibrium properties of water. For example, the density maximum at 4 °C and the minimum in the isothermal compressibility at 46 °C are thought to reflect the presence of singularities in the behaviour of thermodynamic quantities occurring in the supercooled region1 2. The 'stability–limit conjecture'3–5 suggests that these thermodynamic anomalies arise from a single limit of mechanical stability (spinodal line), originating at the liquid–gas critical point, which determines the limit of both superheating at high temperatures and supercooling at low temperatures. Here we present a comprehensive series of molecular dynamics simulations which suggest that, instead, the supercooling anomalies are caused by a newly identified critical point, above which the two metastable amorphous phases of ice (previously shown to be separated by a line of first-order transitions6,7) become indistinguishable. The two amorphous ice phases are thus incorporated into our understanding of the liquid state, providing a more complete picture of the metastable and stable behaviour of water.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Angell, C. A. in Water: A Comprehensive Treatise (ed. Franks, F.) Vol. 7, 1–81 (Plenum, New York, 1982).
Lang, E. W. & Lüdemann, H.-D. Angew. Chem. int. Ed. Engl. 21, 315–329 (1982).
Speedy, R. J. & Angell, C. A. J. chem. Phys. 65, 851–858 (1976).
Speedy, R. J. J. Phys. Chem. 86, 982–991 (1982).
Speedy, R. J. J. phys. Chem. 86, 3002–3005 (1982).
Mishima, O., Calvert, L. D. & Whalley, E. Nature 310, 393–395 (1984).
Mishima, O., Calvert, L. D. & Whalley, E. Nature 314, 76–78 (1985).
Gunton, J. D., San Miguel, M. & Sahni, P. S. in Phase Transitions and Critical Phenomena (eds Domb, C. & Lebowitz, J. L.) 267–482 (Academic, London, 1983).
Compagner, A. Physica 72, 115–122 (1974).
Debenedetti, P. G. & D'Antonio, M. C. J. chem. Phys. 84, 3339–3345 (1986).
Debenedetti, P. G. & D'Antonio, M. C. Am. Inst. chem. Eng. J. 34, 447–455 (1988).
Debenedetti, P. G., Raghaven, V. S. & Borick, S. S. J. phys. Chem. 95, 4540–4551 (1991).
Green, J. L., Durben, D. J., Wolf, G. H. & Angell, C. A. Science 249, 649–652 (1990).
Henderson, S. J. & Speedy, R. J. J. phys. Chem. 91, 3062–3068 (1987).
Stillinger, F. H. & Rahman, A. J. chem. Phys. 60, 1545–1557 (1974).
Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. & Klein, M. L. J. chem. Phys. 79, 926–935 (1983).
Berendsen, H. J. C., Grigera, J. R. & Straatsma, T. P. J. phys. Chem. 91, 6269–6271 (1987).
Striemann, L. thesis, Univ. of Dortmund (1992).
Bellissent-Funel, M.-C., Teixeira, J. & Bosio, L. J. chem. Phys. 87, 2231–2235 (1987).
Whalley, E., Klug, D. D. & Handa, Y. P. Nature 342, 782–783 (1989).
Angell, C. A., Shuppert, J. & Tucker, J. C. J. phys. Chem. 77, 3092–3099 (1973).
Stanley, H. E. & Teixeira, J. J. chem. Phys. 73, 3404–3422 (1980).
Sciortino, F., Poole, P., Stanley, H. E. & Havlin, S. Phys. Rev. Lett. 64, 1686–1689 (1990).
Hallbrucker, A., Mayer, E. & Johari, G. P. Phil. Mag. B60, 179–187 (1989).
Speedy, R. J. J. phys. Chem. 96, 2322–2325 (1992).
Dore, J. in Correlations and Connectivity (eds Stanley, H. E. & Ostrowsky, N.) 188–197 (Kluwer, Dordrecht, 1990).
Stillinger, F. H. & Weber, T. A. J. chem. Phys. 68, 3837–3844 (1978).
Sciortino, F., Geiger, A. & Stanley, H. E. Nature 354, 218–221 (1991).
Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., DiNola, A. & Haak, J. R. J. phys. Chem. 81, 3684–3690 (1984).
Chowdhury, M. R., Dore, J. C. & Wenzel, J. T. J. non-cryst. Solids 53, 247–265 (1982).
Tse, J. S. & Klein, M. L. Phys. Rev. Lett. 58, 1672–1675 (1987).
Zhelezni, B. V. Russ. J. phys. Chem. 43, 1311–1312 (1969).
Fine, R. A. & Millero, F. J. J. chem. Phys. 59, 5529–5536 (1973).
Haar, L., Gallagher, J. S. & Kell, G. NBS/NRC Steam Tables (Hemisphere, Washington DC, 1985).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Poole, P., Sciortino, F., Essmann, U. et al. Phase behaviour of metastable water. Nature 360, 324–328 (1992). https://doi.org/10.1038/360324a0
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/360324a0
This article is cited by
-
Liquid-liquid phase separation in supercooled water from ultrafast heating of low-density amorphous ice
Nature Communications (2023)
-
Anisotropy in spinodal-like dynamics of unknown water at ice V–water interface
Scientific Reports (2023)
-
Realistic phase diagram of water from “first principles” data-driven quantum simulations
Nature Communications (2023)
-
Electron diffraction of deeply supercooled water in no man’s land
Nature Communications (2023)
-
Evidence of a liquid–liquid phase transition in H\(_2\)O and D\(_2\)O from path-integral molecular dynamics simulations
Scientific Reports (2022)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.