Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Possibility of an Arctic ozone hole in a doubled-CO2 climate

Abstract

Increased atmospheric carbon dioxide concentrations are expected to cause cooling of the lower stratosphere. This could enhance the formation of polar stratospheric clouds, which convert potential ozone-depleting species to their active forms. In an idealized three-dimensional numerical simulation of the Northern Hemisphere winter stratosphere, doubling the CO2 concentration leads to the formation of an Arctic ozone hole comparable to that observed over Antarctica, with nearly 100% local depletion of lower-stratospheric ozone.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Farman, J. C., Gardiner, B. G. & Shanklin, J. D. Nature 315, 207–210 (1985).

    Article  ADS  CAS  Google Scholar 

  2. Gardiner, B. G. Geophys. Res. Lett. 15, 901–904 (1988).

    Article  ADS  CAS  Google Scholar 

  3. Stolarski, R. S., Bloomfield, P., McPeters, R. D. & Herman, J. R. Geophys. Res. Lett. 18, 1015–1018 (1991).

    Article  ADS  CAS  Google Scholar 

  4. Solomon, S. Nature 347, 347–354 (1990).

    Article  ADS  CAS  Google Scholar 

  5. Koike, M. et al. geophys. Res. Lett. 18, 791–794 (1991).

    Article  ADS  CAS  Google Scholar 

  6. Proffitt, M. H. et al. Nature 347, 31–36 (1990).

    Article  ADS  CAS  Google Scholar 

  7. Geophys. Res. Lett. 17, No. 4 (1990).

  8. Granier, C. & Brasseur, G. J. geophys. Res. 96, 2995–3011 (1991).

    Article  ADS  Google Scholar 

  9. Austin, J. & Butchart, N. J. geophys. Res. 97, 10165–10186 (1992).

    Article  ADS  Google Scholar 

  10. Brune, W. H., Toohey, D. W., Anderson, J. G. & Chan, K. R. Geophys. Res. Lett. 17, 505–508 (1990).

    Article  ADS  Google Scholar 

  11. Fahey, D. W., Kawa, S. R. & Chan, K. R. Geophys. Res. Lett. 17, 489–492 (1990).

    Article  ADS  Google Scholar 

  12. Jones, R. L., McKenna, D. S., Poole, L. R. & Solomon, S. Geophys. Res. Lett. 17, 549–552 (1990).

    Article  ADS  Google Scholar 

  13. McKenna, D. S. et al. geophys. Res. Lett. 17, 553–556 (1990).

    Article  ADS  Google Scholar 

  14. Austin, J. et al. J. geophys. Res. 94, 16717–16735 (1989).

    Article  ADS  Google Scholar 

  15. SORG Stratospheric Ozone 1991 (HMSO, London, 1991).

  16. Houghton, J. T., Jenkins, G. J. & Ephraums, J. J. (eds) Climate Change, the IPCC Scientific Assessment (Cambridge Univ. Press, Cambridge, 1990).

  17. Fels, S. B., Mahlman, J. D., Schwarzkopf, M. D. & Sinclair, R. W. J. atmos. Sci. 37, 2265–2297 (1980).

    Article  ADS  CAS  Google Scholar 

  18. Rind, D., Suozzo, R., Balachandran, N. K. & Prather, M. J. J. atmos. Sci. 47, 475–494 (1990).

    Article  ADS  Google Scholar 

  19. Shine, K. P. Geophys. Res. Lett. 13, 1331–1334 (1986).

    Article  ADS  CAS  Google Scholar 

  20. Shine, K. P. Q. Jl R. met. Soc. 115, 265–292 (1989).

    Article  ADS  Google Scholar 

  21. Garcia, R. R. & Solomon, S. J. geophys. Res. 88, 1379–1400 (1983).

    Article  ADS  CAS  Google Scholar 

  22. Toohey, D. W., Anderson, J. G., Brune, W. H. & Chan, K. R. Geophys. Res. Lett. 17, 513–516 (1990).

    Article  ADS  Google Scholar 

  23. Geller, M. A., Wu, M.-F. & Gelman, M. E. J. atmos. Sci. 41, 1726–1744 (1984).

    Article  ADS  Google Scholar 

  24. Randel, W. J. Q. Jl R. met. Soc. 114, 1385–1409 (1988).

    Article  ADS  Google Scholar 

  25. Wang, W.-C., Dudek, M. P., Liang, X.-Z. & Kiehl, J. T. Nature 350, 573–577 (1991).

    Article  ADS  CAS  Google Scholar 

  26. Ramaswamy, V., Schwarzkopf, M. D. & Shine, K. P. Nature 355, 810–812 (1992).

    Article  ADS  CAS  Google Scholar 

  27. Boville, B. A. J. atmos. Sci. 41, 1132–1142 (1984).

    Article  ADS  Google Scholar 

  28. Nagatani, R. M., Miller, A. J., Gelman, M. E. & Newman, P. A. Geophys. Res. Lett. 17, 333–336 (1990).

    Article  ADS  Google Scholar 

  29. Kiehl, J. T., Boville, B. A. & Briegleb, B. P. Nature 332, 501–504 (1988).

    Article  ADS  Google Scholar 

  30. Molina, L. T. & Molina, M. J. J. phys. Chem. 91, 433–436 (1987).

    Article  CAS  Google Scholar 

  31. Schoeberl, M. R., Stolarski, R. S. & Krueger, A. J. Geophys. Res. Lett. 16, 377–380 (1989).

    Article  ADS  CAS  Google Scholar 

  32. Prather, M., Garcia, M. M., Suozzo, R. & Rind, D. J. geophys. Res. 95, 3449–3471 (1990).

    Article  ADS  Google Scholar 

  33. Pitari, G., Palermi, S., Visconti, G. & Prinn, R. G. J. geophys. Res. 97, 5953–5962 (1992).

    Article  ADS  CAS  Google Scholar 

  34. Jones, R. L. et al. Q. Jl R. met. Soc. 112, 1127–1143 (1986).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Austin, J., Butchart, N. & Shine, K. Possibility of an Arctic ozone hole in a doubled-CO2 climate. Nature 360, 221–225 (1992). https://doi.org/10.1038/360221a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/360221a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing