Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Possibility of an Arctic ozone hole in a doubled-CO2 climate

Abstract

Increased atmospheric carbon dioxide concentrations are expected to cause cooling of the lower stratosphere. This could enhance the formation of polar stratospheric clouds, which convert potential ozone-depleting species to their active forms. In an idealized three-dimensional numerical simulation of the Northern Hemisphere winter stratosphere, doubling the CO2 concentration leads to the formation of an Arctic ozone hole comparable to that observed over Antarctica, with nearly 100% local depletion of lower-stratospheric ozone.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Farman, J. C., Gardiner, B. G. & Shanklin, J. D. Nature 315, 207–210 (1985).

    ADS  CAS  Article  Google Scholar 

  2. 2

    Gardiner, B. G. Geophys. Res. Lett. 15, 901–904 (1988).

    ADS  CAS  Article  Google Scholar 

  3. 3

    Stolarski, R. S., Bloomfield, P., McPeters, R. D. & Herman, J. R. Geophys. Res. Lett. 18, 1015–1018 (1991).

    ADS  CAS  Article  Google Scholar 

  4. 4

    Solomon, S. Nature 347, 347–354 (1990).

    ADS  CAS  Article  Google Scholar 

  5. 5

    Koike, M. et al. geophys. Res. Lett. 18, 791–794 (1991).

    ADS  CAS  Article  Google Scholar 

  6. 6

    Proffitt, M. H. et al. Nature 347, 31–36 (1990).

    ADS  CAS  Article  Google Scholar 

  7. 7

    Geophys. Res. Lett. 17, No. 4 (1990).

  8. 8

    Granier, C. & Brasseur, G. J. geophys. Res. 96, 2995–3011 (1991).

    ADS  Article  Google Scholar 

  9. 9

    Austin, J. & Butchart, N. J. geophys. Res. 97, 10165–10186 (1992).

    ADS  Article  Google Scholar 

  10. 10

    Brune, W. H., Toohey, D. W., Anderson, J. G. & Chan, K. R. Geophys. Res. Lett. 17, 505–508 (1990).

    ADS  Article  Google Scholar 

  11. 11

    Fahey, D. W., Kawa, S. R. & Chan, K. R. Geophys. Res. Lett. 17, 489–492 (1990).

    ADS  Article  Google Scholar 

  12. 12

    Jones, R. L., McKenna, D. S., Poole, L. R. & Solomon, S. Geophys. Res. Lett. 17, 549–552 (1990).

    ADS  Article  Google Scholar 

  13. 13

    McKenna, D. S. et al. geophys. Res. Lett. 17, 553–556 (1990).

    ADS  Article  Google Scholar 

  14. 14

    Austin, J. et al. J. geophys. Res. 94, 16717–16735 (1989).

    ADS  Article  Google Scholar 

  15. 15

    SORG Stratospheric Ozone 1991 (HMSO, London, 1991).

  16. 16

    Houghton, J. T., Jenkins, G. J. & Ephraums, J. J. (eds) Climate Change, the IPCC Scientific Assessment (Cambridge Univ. Press, Cambridge, 1990).

  17. 17

    Fels, S. B., Mahlman, J. D., Schwarzkopf, M. D. & Sinclair, R. W. J. atmos. Sci. 37, 2265–2297 (1980).

    ADS  CAS  Article  Google Scholar 

  18. 18

    Rind, D., Suozzo, R., Balachandran, N. K. & Prather, M. J. J. atmos. Sci. 47, 475–494 (1990).

    ADS  Article  Google Scholar 

  19. 19

    Shine, K. P. Geophys. Res. Lett. 13, 1331–1334 (1986).

    ADS  CAS  Article  Google Scholar 

  20. 20

    Shine, K. P. Q. Jl R. met. Soc. 115, 265–292 (1989).

    ADS  Article  Google Scholar 

  21. 21

    Garcia, R. R. & Solomon, S. J. geophys. Res. 88, 1379–1400 (1983).

    ADS  CAS  Article  Google Scholar 

  22. 22

    Toohey, D. W., Anderson, J. G., Brune, W. H. & Chan, K. R. Geophys. Res. Lett. 17, 513–516 (1990).

    ADS  Article  Google Scholar 

  23. 23

    Geller, M. A., Wu, M.-F. & Gelman, M. E. J. atmos. Sci. 41, 1726–1744 (1984).

    ADS  Article  Google Scholar 

  24. 24

    Randel, W. J. Q. Jl R. met. Soc. 114, 1385–1409 (1988).

    ADS  Article  Google Scholar 

  25. 25

    Wang, W.-C., Dudek, M. P., Liang, X.-Z. & Kiehl, J. T. Nature 350, 573–577 (1991).

    ADS  CAS  Article  Google Scholar 

  26. 26

    Ramaswamy, V., Schwarzkopf, M. D. & Shine, K. P. Nature 355, 810–812 (1992).

    ADS  CAS  Article  Google Scholar 

  27. 27

    Boville, B. A. J. atmos. Sci. 41, 1132–1142 (1984).

    ADS  Article  Google Scholar 

  28. 28

    Nagatani, R. M., Miller, A. J., Gelman, M. E. & Newman, P. A. Geophys. Res. Lett. 17, 333–336 (1990).

    ADS  Article  Google Scholar 

  29. 29

    Kiehl, J. T., Boville, B. A. & Briegleb, B. P. Nature 332, 501–504 (1988).

    ADS  Article  Google Scholar 

  30. 30

    Molina, L. T. & Molina, M. J. J. phys. Chem. 91, 433–436 (1987).

    CAS  Article  Google Scholar 

  31. 31

    Schoeberl, M. R., Stolarski, R. S. & Krueger, A. J. Geophys. Res. Lett. 16, 377–380 (1989).

    ADS  CAS  Article  Google Scholar 

  32. 32

    Prather, M., Garcia, M. M., Suozzo, R. & Rind, D. J. geophys. Res. 95, 3449–3471 (1990).

    ADS  Article  Google Scholar 

  33. 33

    Pitari, G., Palermi, S., Visconti, G. & Prinn, R. G. J. geophys. Res. 97, 5953–5962 (1992).

    ADS  CAS  Article  Google Scholar 

  34. 34

    Jones, R. L. et al. Q. Jl R. met. Soc. 112, 1127–1143 (1986).

    ADS  CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Austin, J., Butchart, N. & Shine, K. Possibility of an Arctic ozone hole in a doubled-CO2 climate. Nature 360, 221–225 (1992). https://doi.org/10.1038/360221a0

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing