Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Structure of hisactophilin is similar to interleukin-1β and fibroblast growth factor


THE fast reaction of the actin-based cytoskeleton in motile cells after stimulation with a chemoattractant requires a signal-transduction chain that creates a very specific environment at distinct regions beneath the plasma membrane1. Dictyostelium hisactophilin, a unique actin-binding protein, is a submembranous pH sensor that signals slight changes of the H+ concentration to actin by inducing actin polymerization and binding to microfilaments only at pH values below seven2. It has a relative molecular mass of 13.5K and its most unusual feature is the presence of 31 histidine residues among its total of 118 amino acids. The transduction of an external signal from the plasma membrane to the cytoskeleton is poorly understood. Here we report the protein's structure in solution determined by nuclear magnetic resonance spectroscopy. The nuclear Overhauser effect intensities of the three-dimensional nuclear Overhauser spectra3,4 were used directly in the calcula-tions5. The overall folding of hisactophilin is similar to that of interleukin-1β6–9 and fibroblast growth factor10, but the primary amino-acid sequence of hisactophilin is unrelated to these two proteins.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout


  1. Devreotes, P. N. & Zigmond, S. H. A. Rev. Cell Blol. 4, 649–686 (1988).

    Article  CAS  Google Scholar 

  2. Scheel, J. et al. J. biol. Chem. 264, 2832–2839 (1989).

    CAS  PubMed  Google Scholar 

  3. Boelens, R., Vuister, G. W., Koning, T. M. & Kaptein, R. J. Am. chem. Soc. 111, 8525–8526 (1989).

    Article  CAS  Google Scholar 

  4. Holak, T. A., Habazettl, J., Oschkinat, H. & Otlewski, J. J. Am. chem. Soc. 113, 3196–3198 (1991).

    Article  CAS  Google Scholar 

  5. Habazettl, J., Schleicher, M., Otlewski, J. & Holak, T. A. J. molec. Blol. (in the press).

  6. Finzel, B. C. et al. J. molec. Biol. 209, 779–791 (1989).

    Article  CAS  Google Scholar 

  7. Priestle, J. P., Schär, H.-P. & Grütter, M. G. Proc. natn. Acad. Sci. U.S.A. 86, 9667–9671 (1989).

    Article  ADS  CAS  Google Scholar 

  8. Veerapanadian, B. et al. Proteins 12, 10–23 (1992).

    Article  Google Scholar 

  9. Clore, G. M., Wingfield, P. T. & Gronenborn, A. Biochemistry 30, 2315–2323 (1991).

    Article  CAS  Google Scholar 

  10. Zhu, X. et al. Science 251, 90–93 (1991).

    Article  ADS  CAS  Google Scholar 

  11. Wüthrich, K. NMR of Proteins and Nucleic Acids (Wiley, New York, 1986).

    Book  Google Scholar 

  12. Fesik, S. W. & Zuiderweg, E. R. P. Q. Rev. Biophys. 23, 97–131 (1990).

    Article  CAS  Google Scholar 

  13. Ikura, M., Kay, L. E. & Bax, A. Biochemistry 29, 4659–4667 (1990).

    Article  CAS  Google Scholar 

  14. Ross, A. et al. J. magn. Reson. 95, 567–573 (1991).

    ADS  CAS  Google Scholar 

  15. Breg, J. N., Boelens, R., Vuister, G. W. & Kaptein, R. J. magn. Reson. 87, 646–651 (1990).

    ADS  CAS  Google Scholar 

  16. Holak, T. A., Gondol, D., Otlewski, J. & Wilusz, T. J. molec. Biol. 210, 635–648 (1989).

    Article  CAS  Google Scholar 

  17. Vriend, G. J. Molec. Graphics 8, 52–56 (1990).

    Article  CAS  Google Scholar 

  18. Murzin, A. G., Lesk, A. M. & Chothia, C. J. molec. Biol. 223, 531–543 (1992).

    Article  CAS  Google Scholar 

  19. Flaherty, K. M., McKay, D. B., Kabsch, W. & Holmes, K. C. Proc. natn. Acad. Sci. U.S.A. 88, 5041–5045 (1991).

    Article  ADS  CAS  Google Scholar 

  20. Kabsch, W. & Sander, C. Biopolymers 22, 2577–2637 (1983).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations


Rights and permissions

Reprints and Permissions

About this article

Cite this article

Habazettl, J., Gondol, D., Wiltscheck, R. et al. Structure of hisactophilin is similar to interleukin-1β and fibroblast growth factor. Nature 359, 855–858 (1992).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing