Abstract
MYRISTATE is a fatty acid (fourteen-carbon chain with no double bonds, C14:0) linked to the amino-terminal glycine of several proteins1–7, including α-subunits of heterotrimeric (α/βγ) G proteins8,9. We report here a novel modification at the N terminus of the α-subunit of the photoreceptor G protein transducin, Tα, with heterogeneous fatty acids composed of laurate (C12:0), unsaturated C14:2 and C14:1 fatty acids, and a small amount (∼5%) of myristate. Both the GTPase activity of Tα/Tβγ and the T/βγ-dependent ADP-ribosylation of Tα catalysed by pertussis toxin were inhibited by the lauroylated and myristoylated N-terminal peptide of Tα. The myristoylated peptide gave 50% inhibition at a 3.5 to ∼4.5-fold lower concentration than the lauroylated peptide in each assay, indicating that the strength of the interaction between Tα and Tβγ is altered by heterogeneous fatty acids linked to Tα. This suggests that a looser subunit interaction in transducin which is due to an abundance of N-linked fatty acids other than myristate would favour the rapid turnover and catalysis essential for the visual excitation in photoreceptor cells.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Transducin activates cGMP phosphodiesterase by trapping inhibitory γ subunit freed reversibly from the catalytic subunit in solution
Scientific Reports Open Access 10 May 2019
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout
References
Carr, S. A., Biemann, K., Shoji, S., Parmelee, D. C. & Titani, K. Proc. natn. Acad. Sci. U.S.A. 79, 6128–6131 (1982).
Aitken, A. et al. FEBS Lett. 150, 314–318 (1982).
Henderson, L. E., Krutzsch, H. C. & Oroszlan, S. Proc. natn. Acad. Sci. U.S.A. 80, 339–343 (1983).
Ozols, J., Carr, S. A. & Strittmatter, P. J. biol. Chem. 259, 13349–13354 (1984).
Marchildon, G. A., Casnellie, J. E., Walsh, K. A. & Krebs, E. G. Proc. natn. Acad. Sci. U.S.A. 81, 7679–7682 (1984).
Shultz, A. M., Henderson, L. E., Oroszlan, S., Garber, E. A. & Hanafusa, H. Science 227, 427–429 (1985).
Chow, M. et al. Nature 327, 482–486 (1987).
Schultz, A. M. et al. Biochem. biophys. Res. Commun. 146, 1234–1239 (1987).
Buss, J. E., Mumby, S. M., Casey, P. J., Gilman, A. G. & Sefton, B. M. Proc. natn. Acad. Sci. U.S.A. 84, 7493–7497 (1987).
Tanabe, T. et al. Nature 315, 242–245 (1985).
Medynski, D. C. et al. Proc. natn. Acad. Sci. U.S.A. 82, 4311–4315 (1985).
Yatsunami, K. & Khorana, H. G. Proc. natn. Acad. Sci. U.S.A. 82, 4316–4320 (1985).
Duronio, R. J., Rudnick, D. A., Adams, S. P., Towler, D. A. & Gordon, J. I. J. biol. Chem. 266, 10498–10504 (1991).
Mumby, S. M., Heukeroth, R. O., Gordon, J. I. & Gilman, A. G. Proc. natn. Acad. Sci. U.S.A. 87, 728–732 (1990).
Hurley, J. B., Simon, M. I., Teplow, D. B., Robishow, J. D. & Gilman, A. G. Science 226, 860–862 (1984).
Tomer, K. B., Crow, F. W. & Gross, M. L. J. Am. chem. Soc. 105, 5487–5488 (1983).
Navon, S. E. & Fung, B. K.-K. J. biol. Chem. 262, 15746–15751 (1987).
Neer, E. J., Pulsifer, L. & Wolf, L. G. J. biol. Chem. 263, 8996–9000 (1988).
Journot, L., Pantaloni, C., Bockaert, J. & Audigier, Y. J. biol Chem. 266, 9009–9015 (1991).
Denker, B. M., Neer, E. J. & Schmidt, C. J. J. biol. Chem. 267, 6272–6277 (1992).
Watkins, P. A. et al. J. biol. Chem. 260, 13478–13482 (1985).
Linder, M. E. et al. J. biol. Chem. 266, 4654–4659 (1991).
Vuong, T. M., Chabre, M. & Stryer, L. Nature 311, 659–661 (1984).
Heuckeroth, R. O., Glaser, L. & Gordon, J. I. Proc. natn. Acad. Sci. U.S.A. 85, 8795–8799 (1988).
Kishore, N. S. et al. J. biol Chem. 266, 8835–8855 (1991).
Towler, D. A. et al. J. biol. Chem. 263, 1784–1790 (1988).
Lochrie, M. A., Hurley, J. B. & Simon, M. I. Science 228, 96–99 (1985).
Fukada, Y., Ohguro, H., Saito, T., Yoshizawa, T. & Akino, T. J. biol. Chem 264, 5937–5943 (1989).
Fukada, Y. et al. Nature 346, 658–660 (1990).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Kokame, K., Fukada, Y., Yoshizawa, T. et al. Lipid modification at the N terminus of photoreceptor G-protein α-subunit. Nature 359, 749–752 (1992). https://doi.org/10.1038/359749a0
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/359749a0
This article is cited by
-
Transducin activates cGMP phosphodiesterase by trapping inhibitory γ subunit freed reversibly from the catalytic subunit in solution
Scientific Reports (2019)
-
G protein alpha transducin, cone
AfCS-Nature Molecule Pages (2010)
-
G protein gamma 8
AfCS-Nature Molecule Pages (2007)
-
Phototransduction in mouse rods and cones
Pflügers Archiv - European Journal of Physiology (2007)
-
The 2.0 Å crystal structure of a heterotrimeric G protein
Nature (1996)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.