Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The E. coli ffh gene is necessary for viability and efficient protein export


HOMOLOGUES of the gene encoding the 54K (Mr 54,000) subunit of the mammalian signal recognition particle have been identified in different organisms1–5. The Escherichia coli homologue, termed ffh (for fifty-four homologue), specifies a protein (Ffh) that shares many properties with its eukaryotic counterpart, including association with mammalian 7S RNA6 and the ability to bind signal sequences specifically7,8. Ffh also associates with E. coli 4.5S RNA, showing that it can form a ribonucleoprotein complex in prokaryotes6,9,10. These results are intriguing because extensive genetic and biochemical characterization of E. coli failed to identify a signal recognition particle-like mechanism for protein export11. Here we address this issue directly by construction of a strain in which ffh expression is arabinose-dependent. Results of depletion experiments indicate that Ffh is important in protein translocation.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout


  1. Römisch, K. et al. Nature 340, 478–482 (1989).

    Article  ADS  Google Scholar 

  2. Bernstein, H. D. et al. Nature 340, 482–486 (1989).

    Article  ADS  CAS  Google Scholar 

  3. Hann, B. C., Poritz, M. A., & Walter, P. J. Cell Biol. 109, 3223–3230 (1989).

    Article  CAS  Google Scholar 

  4. Hann, B. C., Walter, P. Cell 67, 131–144 (1991).

    Article  CAS  Google Scholar 

  5. Byström, A. S., Hjalmarsson, K. J., Wikström, P. M. & Björk, G. R. EMBO J. 2, 899–905 (1983).

    Article  Google Scholar 

  6. Ribes, V. et al. Cell 63, 591–600 (1990).

    Article  CAS  Google Scholar 

  7. Bernstein, H. D., Zopf, D., Freymann, D. & Walter, P. (manuscript in preparation).

  8. Luirink, J. et al. Nature 359, 741–743 (1992).

    Article  ADS  CAS  Google Scholar 

  9. Poritz, M. A. et al. Science 250, 1111–1117 (1990).

    Article  ADS  CAS  Google Scholar 

  10. Brown, S. New Biol. 3, 430–438 (1991).

    CAS  PubMed  Google Scholar 

  11. Bassford, P. et al. Cell 65, 367–368 (1991).

    Article  CAS  Google Scholar 

  12. Bieker, K., Phillips, G. J. & Silhavy, T. J. J. Bioenerg. Biomembr. 22, 291–310 (1990).

    Article  CAS  Google Scholar 

  13. Bochkareva, E. S., Lissin, N. M. & Girshovich, A. S. Nature 336, 254–257 (1988).

    Article  ADS  CAS  Google Scholar 

  14. Bernstein, H. D., Rapoport, T. A. & Walter, P. Cell 58, 1017–1019 (1989).

    Article  CAS  Google Scholar 

  15. Kumamoto, C. A. & Beckwith, J. J. Bact. 154, 253–260 (1983).

    CAS  PubMed  Google Scholar 

  16. Kumamoto, C. A. & Beckwith, J. J. Bact. 163, 267–274 (1985).

    CAS  PubMed  Google Scholar 

  17. Vieira, J. & J. & Messing, J. Gene 19, 259–268 (1982).

    Article  CAS  Google Scholar 

  18. Hamilton, C. M. et al. J. Bact. 171, 4617–4622 (1989).

    Article  CAS  Google Scholar 

  19. Silhavy, T. J., Berman, M. L. & Enquist, L. W. Experiments with Gene Fusions (Cold Spring Harbor Laboratory, New York, 1984).

    Google Scholar 

  20. Neidhardt, F. C., Block, P. L. & Smith, D. F. J. Bact. 119, 736–747 (1974).

    CAS  PubMed  Google Scholar 

  21. Davis, R. W., Botstein, D. & Roth, J. Advanced Bacterial Genetics (Cold Spring Harbor Laboratory, New York, 1986).

    Google Scholar 

  22. Kohl, J. et al. Nucleic Acids Res. 18, 1069 (1990).

    Article  CAS  Google Scholar 

  23. Phillips, G. J. & Silhavy, T. J. Nature 344, 882–884 (1990).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations


Rights and permissions

Reprints and Permissions

About this article

Cite this article

Phillips, G., Silhavy, T. The E. coli ffh gene is necessary for viability and efficient protein export. Nature 359, 744–746 (1992).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing