Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Patterns of elevated free calcium and calmodulin activation in living cells


THE temporal and spatial dynamics of intracellular signals and protein effectors are being defined as a result of imaging using fluorescent reagents within living cells1–5. We have described a new class of fluorescent analogues2 termed optical biosensors6, which sense chemical or molecular events through their effects on protein transducers7. One example of this new class of indicators is MeroCaM, an environmentally sensitive fluorophore which when it is attached to calmodulin reflects the activation of calmodulin by calcium in vitro2. We report here that the rise in free calcium and MeroCaM activation occur in the same period during serum stimulation of quiescent fibroblasts. MeroCaM activation also correlates with the spatial pattern of increased free calcium and the contraction of transverse fibres during wound healing1, 8–10. Finally, migrating fibroblasts in the later stages of wound-healing exhibit an increasing gradient of free calcium and MeroCaM activation from the front to the rear.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout


  1. Kolega, J. & Taylor, D. L. Curr. Top. Membr. 38, 187–206 (1991).

    Article  CAS  Google Scholar 

  2. Hahn, K. M., Waggoner, A. S. & Taylor D. L. J. biol. Chem. 265, 20335–20345 (1990).

    CAS  PubMed  Google Scholar 

  3. Taylor, D. L. et al. Cell Structure and Function by Spectrofluorimetry (eds Kohen, E. & Hirschberg, J. G.) 297–313 (Academic, New York, 1989).

    Book  Google Scholar 

  4. Tsien R. Y. Meth. Cell Biol. 30, 127–153 (1989).

    Article  CAS  Google Scholar 

  5. Bright, G. R., Whitaker, J. E., Haugland, R. P. & Taylor, D. L. J. cell. Physiol. 141, 410–419 (1989).

    Article  CAS  Google Scholar 

  6. Hahn, K. M. et al. Fluorescent Probes for Biological Function in Living Cells (eds, Mason, W. T. & Relf, G.) (Academic, London, in the press).

  7. Adams, S. R., Haroontunian, A. T., Buechler, Y. J., Taylor, S. S. & Tsien, R. Y. Nature 349, 694–697 (1991).

    Article  ADS  CAS  Google Scholar 

  8. Fisher, G. W., Conrad, P. A., DeBiasio, R. L. & Taylor, D. L. Cell Motil. Cytoskel. 11, 235–247 (1988).

    Article  CAS  Google Scholar 

  9. Conrad, P. A., Nederlof, M. A., Herman, I. M. & Taylor, D. L. Cell Motil. Cytoskel. 14, 527–543 (1989).

    Article  CAS  Google Scholar 

  10. DeBiasio, R. L., Wang, L., Fisher, G. W. & Taylor, D. L. J. Cell Biol. 107, 2631–2645 (1988).

    Article  CAS  Google Scholar 

  11. Mills, J. S., Walsh, M. P., Nemcek, K. & Johnson, J. D. Biochemistry 27, 991–996 (1988).

    Article  CAS  Google Scholar 

  12. Cohen, P. & Klee, C. (eds), Calmodulin (Elsevier, New York, 1988).

  13. Bright, G. R., Fisher, G. W., Rogowska, J. & Taylor, D. L. Meth. Cell Biol. 30, 157–190 (1989).

    Article  CAS  Google Scholar 

  14. Byron, K. L. & Villereal, M. L. J. biol. Chem. 264, 18234–18239 (1989).

    CAS  PubMed  Google Scholar 

  15. Tucker, R. W. & Fay, F. S. Eur. J. Cell. Biol. 51, 120–127 (1990).

    CAS  PubMed  Google Scholar 

  16. McNeil, P. L., McKenna, M. P. & Taylor, D. L. J. Cell Biol. 101, 372–379 (1985).

    Article  CAS  Google Scholar 

  17. Berridge, M. J. J. biol. Chem. 265, 9583–9586 (1990).

    CAS  PubMed  Google Scholar 

  18. Giuliano, K. et al. Cell Motil. Cytoskel. 16, 14–21 (1990).

    Article  CAS  Google Scholar 

  19. Sellers, J. R. & Adelstein, R. S. The Enzymes XVIII, 381–418 (1987).

  20. Sellers, J. R. Curr. Opin. Cell Biol. 3, 98–104 (1991).

    Article  CAS  Google Scholar 

  21. Kamm, K. E. & Stull, J. T. A. Rev. Pharmac. Toxicol. 25, 593–620 (1985).

    Article  CAS  Google Scholar 

  22. Taylor, D. L., Blinks, J. R. & Reynolds, G. T. J. Cell Biol. 86, 599–607 (1980).

    Article  CAS  Google Scholar 

  23. Brundage, R. A. Fogarty, K. E., Tuft, R. A. & Fay, F. S. Science 254, 703–706 (1991).

    Article  ADS  CAS  Google Scholar 

  24. Taylor, D. L., Nederlof, M., Lanni, F. & Waggoner, A. S. Am. Sci. 80, 322–335 (1992).

    ADS  Google Scholar 

  25. Luby-Phelps, K., Lanni, F. & Taylor, D. L. J. Cell Biol. 101, 1245–1256 (1985).

    Article  CAS  Google Scholar 

  26. Zavortink, M. M., Welsh, M. J. & McIntosh, J. R. Expl Cell Res. 149, 375–385 (1983).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations


Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hahn, K., DeBiasio, R. & Taylor, D. Patterns of elevated free calcium and calmodulin activation in living cells. Nature 359, 736–738 (1992).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing