Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Creep, compaction and the weak rheology of major faults

Abstract

Field and laboratory observations suggest that the porosity within fault zones varies over earthquake cycles so that fluid pressure is in long-term equilibrium with hydrostatic fluid pressure in the country rock. Between earthquakes, ductile creep compacts the fault zone, increasing fluid pressure, and finally allowing frictional failure at relatively low shear stress. Earthquake faulting restores porosity and decreases fluid pressure to below hydrostatic. This mechanism may explain why major faults, such as the San Andreas system, are weak.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Zoback, M. D. Phil. Trans. R. Soc. A337, 141–150 (1991).

    ADS  Google Scholar 

  2. Hickman, S. H. Rev. Geophys. 29 (suppl.), 759–775 (1991).

    ADS  Google Scholar 

  3. Lachenbruch, A. H. & Sass, J. H. J. geophys. Res. 85, 6185–6222 (1980).

    Article  ADS  Google Scholar 

  4. Matthews, M. V. & Segall, P. J. geophys. Res. (in the press).

  5. Lisowski, M., Prescott, W. H., Savage, J. C. & Johnston, M. J. Geophys. Res. Lett. 17, 1437–1440 (1990).

    Article  ADS  Google Scholar 

  6. Byerlee, J. D. Pure appl. Geophys. 116, 615–626 (1978).

    Article  ADS  Google Scholar 

  7. Morrow, C., Radney, B. & Byerlee, J. D. in Fault Mechanics and Transport Properties in Rocks (the Brace Volume) (eds Evans, B. & Wong, T. F.) 69–88 (Academic, London, 1992).

    Book  Google Scholar 

  8. Cox, S. F. & Etheridge, M. A. J. struct. Geol. 11, 147–162 (1989).

    Article  ADS  Google Scholar 

  9. Wannamaker, P. E. et al. J. geophys. Res. 94, 14127–14144 (1989).

    Article  ADS  Google Scholar 

  10. Byerlee, J. D. Geophys. Res. Lett. 17, 2109–2112 (1990).

    Article  ADS  Google Scholar 

  11. McCaig, A. M. Geology 16, 867–870 (1988).

    Article  ADS  Google Scholar 

  12. Dick, H. J. B. et al. Proc. ODP 118, 439–538 (1991).

    Google Scholar 

  13. Rice, J. R. in Fault Mechanics and Transport Properties in Rocks (the Brace Volume) (eds Evans, B. & Wong, T. F.) 475–503 (Academic, London, 1992).

    Book  Google Scholar 

  14. Melosh, H. J. J. geophys. Res. 84, 7513–7520 (1979).

    Article  ADS  Google Scholar 

  15. Lachenbruch, A. H. J. geophys. Res. 85, 6097–6112 (1980).

    Article  ADS  Google Scholar 

  16. Raleigh, C. B. in Proc. Conf. II, Experimental Studies of Rock Friction with Application to Earthquake Prediction, 291–304 (U.S. Geological Survey, Menlo Park, California, 1977).

    Google Scholar 

  17. McKenzie, D. P. & Brune, J. N. Geophys. J. R. astr. Soc. 29, 65–78 (1972).

    Article  ADS  Google Scholar 

  18. Mead, W. J. J. Geol. 33, 685–698 (1925).

    Article  ADS  Google Scholar 

  19. Rutter, E. H. J. geol. Soc. Lond. 140, 725–740 (1983).

    Article  Google Scholar 

  20. Tada, R., Maliva, R. & Siever, R. Geochim. cosmochim. Acta 51, 2295–2301 (1987).

    Article  ADS  Google Scholar 

  21. Blanpied, M. L., Lockner, D. A. & Byerlee, J. D. Geophys. Res. Lett. 18, 609–612 (1991).

    Article  ADS  Google Scholar 

  22. Lockner, D. A. thesis, Massachusetts Inst. Technol. (1990).

  23. Smith, D. L. & Evans, B. J. geophys. Res. 89, 4125–4135 (1984).

    Article  ADS  CAS  Google Scholar 

  24. Morrow, C. A., Moore, D. E. & Byerlee, J. D. Mater. Res. Soc. Proc. 44, 467–473 (1985).

    Article  CAS  Google Scholar 

  25. Blanpied, M. L., Lockner, D. A. & Byerlee, J. D. Nature 358, 574–576 (1992).

    Article  ADS  Google Scholar 

  26. Marone, C., Raleigh, C. B. & Scholz, C. H. J. geophys. Res. 95, 7007–7025 (1990).

    Article  ADS  Google Scholar 

  27. Morrow, C. A. & Byerlee, J. D. J. struct. Geol. 11, 815–825 (1989).

    Article  ADS  Google Scholar 

  28. Powley, D. E. Earth Sci. Rev. 29, 215–226 (1990).

    Article  ADS  Google Scholar 

  29. Walder, J. & Nur, A. J. geophys. Res. 89, 11539–11548 (1984).

    Article  ADS  Google Scholar 

  30. Hobbs, B. E., Ord, A. & Teyssier, C. Pure appl. Geophys. 124, 309–336 (1986).

    Article  ADS  Google Scholar 

  31. Sibson, R. H., Robert, F. & Poulsen, K. H. Geology 16, 551–555 (1988).

    Article  ADS  CAS  Google Scholar 

  32. Power, W. L. & Tullis, T. E. J. struct. Geol. 11, 879–893 (1989).

    Article  ADS  Google Scholar 

  33. Parry, W. T. & Bruhn, R. L. J. geophys. Res. 91, 730–744 (1986).

    Article  ADS  CAS  Google Scholar 

  34. Janecke, S. U. & Evans, J. P. Geology 16, 1064–1067 (1988).

    Article  ADS  CAS  Google Scholar 

  35. Chester, F. M., Evans, J. P. & Biegel, R. L. J. geophys. Res. (in the press).

  36. Sibson, R. H. Pure appl. Geophys. 124, 159–175 (1986).

    Article  ADS  Google Scholar 

  37. O'Neil, J. R. Pure appl. Geophys. 122, 440–446 (1985).

    Article  ADS  Google Scholar 

  38. Byerlee, J. Geology (submitted).

  39. Byerlee, J. Tectonophysics (in the press).

  40. Angevine, C. L., Turcotte, D. L. & Furnish, M. D. Tectonics 1, 151–160 (1982).

    Article  ADS  Google Scholar 

  41. Sleep, N. H. J. geophys. Res. 93, 10255–10272 (1988).

    Article  ADS  Google Scholar 

  42. Jaeger, J. C. & Cook, N. G. W. Fundamentals of Rock Mechanics (Chapman and Hall, London, 1971).

    Google Scholar 

  43. Sibson, R. H. Bull. seismol. Soc. Am. 80, 1580–1604 (1990).

    Google Scholar 

  44. McKenzie, D. P. J. Petrol. 25, 713–765 (1984).

    Article  ADS  CAS  Google Scholar 

  45. McKenzie, D. P. J. geol. Soc. Lond. 144, 299–307 (1987).

    Article  Google Scholar 

  46. Stevenson, D. J. & Scott, D. R. A. Rev. Fluid Mech. 23, 305–339 (1991).

    Article  ADS  Google Scholar 

  47. Haar, L., Gallagher, J. S. & Kell, G. S. NBS/NRC Steam Tables (Hemisphere, Washington, 1971).

    Google Scholar 

  48. Aydin, A. Pure appl. Geophys. 116, 913–930 (1978).

    Article  ADS  Google Scholar 

  49. Aydin, A. & Johnston, A. M. Pure appl. Geophys. 116, 931–942 (1978).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sleep, N., Blanpied, M. Creep, compaction and the weak rheology of major faults. Nature 359, 687–692 (1992). https://doi.org/10.1038/359687a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/359687a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing