Abstract
Field and laboratory observations suggest that the porosity within fault zones varies over earthquake cycles so that fluid pressure is in long-term equilibrium with hydrostatic fluid pressure in the country rock. Between earthquakes, ductile creep compacts the fault zone, increasing fluid pressure, and finally allowing frictional failure at relatively low shear stress. Earthquake faulting restores porosity and decreases fluid pressure to below hydrostatic. This mechanism may explain why major faults, such as the San Andreas system, are weak.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Unstable Shear Slip Failure and Seismic Potential Investigation Using DEM in Underground Mining
Mining, Metallurgy & Exploration Open Access 21 January 2023
-
A unifying basis for the interplay of stress and chemical processes in the Earth: support from diverse experiments
Contributions to Mineralogy and Petrology Open Access 19 November 2020
-
Fault valving and pore pressure evolution in simulations of earthquake sequences and aseismic slip
Nature Communications Open Access 24 September 2020
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout
References
Zoback, M. D. Phil. Trans. R. Soc. A337, 141–150 (1991).
Hickman, S. H. Rev. Geophys. 29 (suppl.), 759–775 (1991).
Lachenbruch, A. H. & Sass, J. H. J. geophys. Res. 85, 6185–6222 (1980).
Matthews, M. V. & Segall, P. J. geophys. Res. (in the press).
Lisowski, M., Prescott, W. H., Savage, J. C. & Johnston, M. J. Geophys. Res. Lett. 17, 1437–1440 (1990).
Byerlee, J. D. Pure appl. Geophys. 116, 615–626 (1978).
Morrow, C., Radney, B. & Byerlee, J. D. in Fault Mechanics and Transport Properties in Rocks (the Brace Volume) (eds Evans, B. & Wong, T. F.) 69–88 (Academic, London, 1992).
Cox, S. F. & Etheridge, M. A. J. struct. Geol. 11, 147–162 (1989).
Wannamaker, P. E. et al. J. geophys. Res. 94, 14127–14144 (1989).
Byerlee, J. D. Geophys. Res. Lett. 17, 2109–2112 (1990).
McCaig, A. M. Geology 16, 867–870 (1988).
Dick, H. J. B. et al. Proc. ODP 118, 439–538 (1991).
Rice, J. R. in Fault Mechanics and Transport Properties in Rocks (the Brace Volume) (eds Evans, B. & Wong, T. F.) 475–503 (Academic, London, 1992).
Melosh, H. J. J. geophys. Res. 84, 7513–7520 (1979).
Lachenbruch, A. H. J. geophys. Res. 85, 6097–6112 (1980).
Raleigh, C. B. in Proc. Conf. II, Experimental Studies of Rock Friction with Application to Earthquake Prediction, 291–304 (U.S. Geological Survey, Menlo Park, California, 1977).
McKenzie, D. P. & Brune, J. N. Geophys. J. R. astr. Soc. 29, 65–78 (1972).
Mead, W. J. J. Geol. 33, 685–698 (1925).
Rutter, E. H. J. geol. Soc. Lond. 140, 725–740 (1983).
Tada, R., Maliva, R. & Siever, R. Geochim. cosmochim. Acta 51, 2295–2301 (1987).
Blanpied, M. L., Lockner, D. A. & Byerlee, J. D. Geophys. Res. Lett. 18, 609–612 (1991).
Lockner, D. A. thesis, Massachusetts Inst. Technol. (1990).
Smith, D. L. & Evans, B. J. geophys. Res. 89, 4125–4135 (1984).
Morrow, C. A., Moore, D. E. & Byerlee, J. D. Mater. Res. Soc. Proc. 44, 467–473 (1985).
Blanpied, M. L., Lockner, D. A. & Byerlee, J. D. Nature 358, 574–576 (1992).
Marone, C., Raleigh, C. B. & Scholz, C. H. J. geophys. Res. 95, 7007–7025 (1990).
Morrow, C. A. & Byerlee, J. D. J. struct. Geol. 11, 815–825 (1989).
Powley, D. E. Earth Sci. Rev. 29, 215–226 (1990).
Walder, J. & Nur, A. J. geophys. Res. 89, 11539–11548 (1984).
Hobbs, B. E., Ord, A. & Teyssier, C. Pure appl. Geophys. 124, 309–336 (1986).
Sibson, R. H., Robert, F. & Poulsen, K. H. Geology 16, 551–555 (1988).
Power, W. L. & Tullis, T. E. J. struct. Geol. 11, 879–893 (1989).
Parry, W. T. & Bruhn, R. L. J. geophys. Res. 91, 730–744 (1986).
Janecke, S. U. & Evans, J. P. Geology 16, 1064–1067 (1988).
Chester, F. M., Evans, J. P. & Biegel, R. L. J. geophys. Res. (in the press).
Sibson, R. H. Pure appl. Geophys. 124, 159–175 (1986).
O'Neil, J. R. Pure appl. Geophys. 122, 440–446 (1985).
Byerlee, J. Geology (submitted).
Byerlee, J. Tectonophysics (in the press).
Angevine, C. L., Turcotte, D. L. & Furnish, M. D. Tectonics 1, 151–160 (1982).
Sleep, N. H. J. geophys. Res. 93, 10255–10272 (1988).
Jaeger, J. C. & Cook, N. G. W. Fundamentals of Rock Mechanics (Chapman and Hall, London, 1971).
Sibson, R. H. Bull. seismol. Soc. Am. 80, 1580–1604 (1990).
McKenzie, D. P. J. Petrol. 25, 713–765 (1984).
McKenzie, D. P. J. geol. Soc. Lond. 144, 299–307 (1987).
Stevenson, D. J. & Scott, D. R. A. Rev. Fluid Mech. 23, 305–339 (1991).
Haar, L., Gallagher, J. S. & Kell, G. S. NBS/NRC Steam Tables (Hemisphere, Washington, 1971).
Aydin, A. Pure appl. Geophys. 116, 913–930 (1978).
Aydin, A. & Johnston, A. M. Pure appl. Geophys. 116, 931–942 (1978).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Sleep, N., Blanpied, M. Creep, compaction and the weak rheology of major faults. Nature 359, 687–692 (1992). https://doi.org/10.1038/359687a0
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/359687a0
This article is cited by
-
Unstable Shear Slip Failure and Seismic Potential Investigation Using DEM in Underground Mining
Mining, Metallurgy & Exploration (2023)
-
Long-lived shallow slow-slip events on the Sunda megathrust
Nature Geoscience (2021)
-
Structural Changes and Electrodynamic Effects in Polymers under Fast Uniaxial Compression
Chinese Journal of Polymer Science (2021)
-
Structural control and system-level behavior of the seismic cycle at the Nankai Trough
Earth, Planets and Space (2020)
-
Fault valving and pore pressure evolution in simulations of earthquake sequences and aseismic slip
Nature Communications (2020)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.