Abstract
Activins can induce mesoderm in embryonic explants and have been proposed as the natural inducer in Xenopus. A mutant activin receptor that inhibits activin signalling is used to show that activin is required for the induction of mesoderm in vivo and the patterning of the embryonic body plan. Blocking the activin signal transduction pathway also reveals autonomous induction of a neural marker and unmasks a relationship between activin and fibroblast growth factor.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Quantitative analysis of transcriptome dynamics provides novel insights into developmental state transitions
BMC Genomics Open Access 23 October 2022
-
Molecular specification of germ layers in vertebrate embryos
Cellular and Molecular Life Sciences Open Access 14 December 2015
-
Global identification of Smad2 and Eomesodermin targets in zebrafish identifies a conserved transcriptional network in mesendoderm and a novel role for Eomesodermin in repression of ectodermal gene expression
BMC Biology Open Access 03 October 2014
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout
References
Keller, R. in Methods in Cell Biology (eds Kay, B. K. & Peng, H. B.) (Academic, San Diego, 1991).
Keller, R. E. & Danilchik, M. Development 103, 193–210 (1988).
Wilson, P. A. & Keller, R. E. Development 105, 155–166 (1989).
Mangold, O. Naturwissenschaften 21, 761–766 (1933).
Hemmati-Brivanlou, A., Stewart, R. M. & Harland, R. M. Science 250, 800–802 (1990).
Spemann, H. & Mangold, H. Arch. mikr. Anat. EntwMech. 100, 599–638 (1924).
Nieuwkoop, P. D. Wilhelm Roux Arch. EntwMech. Org. 162, 341–373 (1969).
Melton, D. A. Science 252, 234–241 (1991).
Dawid, I. B. in Methods in Cell Biology (eds Kay, B. K. & Peng, H. B.) (Academic, San Diego, 1991).
Slack, J. M. W., Darlington, B. G., Heath, J. K., & Godsave, S. F. Nature 326, 197–200 (1987).
Kimelman, D. & Kirschner, M. Cell 51, 869–877 (1987)
Rosa, F. et al. Science 239, 783–785 (1988).
Smith, J. C. Development 99, 3–14 (1987).
Asashima, M. et al. Naturwissenschaften 77, 389–391 (1990).
Sokol, S., Wong, G. G. & Melton, D. A. Science 249, 561–564 (1990).
McMahon, A. P. & Moon, R. T. Cell 58, 1075–1084 (1989).
Christian, J. L., Gavin, B. J., McMahon, A. P. & Moon, R. T. Devl Biol. 143, 230–234 (1991).
Sokol, S., Christian, J. L., Moon, R. T. & Melton, D. A. Cell 67, 741–752 (1991).
Smith, W. C. & Harland, R. M. Cell 67, 753–765 (1991).
Thomsen, G. et al. Cell 63, 485–493 (1990).
Asashima, M. et al. Proc. natn. Acad. Sci U.S.A. 88, 6511–6514 (1991).
Shiurba, R. A., Jing, N., Sakakura, T. & Godsave, S. F. Development 113, 487–494 (1991).
Ruiz i Altaba, A. & Melton, D. A. Trends Genet. 6, 57–64 (1990).
Green, J. B. A. & Smith, J. C. Nature 347, 391–394 (1990).
Green, J. B., Howes, G., Symes, K., Cooke, J. & Smith, J. C. Development 108, 173–183 (1990).
Sokol, S. & Melton, D. A. Nature 351, 409–411 (1991).
Ruiz i Altaba, A. & Jessel, T. Genes Dev. 5, 175–187 (1991).
Herskowitz, I. Nature 329, 219–222 (1987).
Amaya, E., Musci, T. J. & Kirschner, M. W. Cell 66, 257–270 (1991).
Kondo, M. et al. Biochem. biophys. Res. Commun. 181, 684–690 (1991).
Mathews, L. S., Vale, W. W. & Kintner, C. R. Science 255, 1702–1705 (1992).
Hemmati-Brivanlou, A., Wright, D. A. & Melton, D. A. (in the press).
Symes, K. & Smith, J. Development 101, 185–408 (1987).
Smith, J. C., Price, B. M. J., Green, J. B. A., Weigel, D., & Herrmann, B. G. Cell 67, 79–87 (1991).
Rosa, F. M. Cell 57, 965–974 (1989).
Cho, K. W. Y., Blumberg, B., Steinbeissier, H. & De Robertis, E. M. Cell 67, 1111–1120 (1991).
Mohun, T. J., Brennan, S., Dathan, N., Fairman, S. & Gurdon, J. B. Nature 311, 716–721 (1984).
Sive, H. L., Hattori, K. & Weintraub, H. Cell 58, 171–180 (1989).
Bolce, M., Hemmati-Brivanlou, A., Kirsher, P. & Harland, R. (in the press).
Kintner, C. R. & Melton, D. A. Development 99, 311–325 (1987).
Smith, J. C., Price, B. M. J., Van Nimmen, K. & Huylebroeck, D., Nature 345, 729–731 (1990).
Kintner, C. R. & Dodd, J. Development 113, 1495–1506 (1991).
Sharpe, C. R. & Gurdon, J. B. Development 109, 765–774 (1990).
Vize, P. D., Hemmati-Brivanlou, A., Harland, R., & Melton, D. A. in Xenopus laevis: Practical uses in Cell and Molecular Biology (eds Kay, B. K. & Peng, H. B.) 361–381 (Academic, Florida, 1991).
Nakamura, T., Sugino, K., Titani, K. & Sugino, H. J. biol. Chem. 266, 19432–19437 (1991).
Dale, L., Howes, G., Price, B. M. J. & Smith, J. C. Development 115, 573–585 (1992).
Jones, C. M., Lyons, K. M., Lapan, P. M., Wright, C. V. & Hogan, B. L. M. Development 115, 639–647 (1992).
Krieg, P. A. & Melton, D. A. Nucleic Acids Res. 12, 7057–7070 (1984).
Newport, J. & Kirschner, M. Cell 30, 675–686 (1982).
Nieuwkoop, P. D. & Faber, J. Normal Table of Xenopus laevis (Daudin) (North-Holland, Amsterdam, 1967).
Condie, B. G. & Harland, R. M. Development 101, 93–105 (1987).
Krieg, P., Varnum, S., Wormington, M. & Melton, D. A. Devl Biol. 133, 93–100 (1989).
Jonas, E. A., Snape, A. M. & Sargent, T. D. Development 106, 399–405 (1989).
Hemmati-Brivanlou, A. et al. Development 110, 325–330 (1990).
Harland, R. M. in Methods in Cell Biology (eds Kay, B. K. & Peng, H. B.) (Academic, San Diego, 1991).
Hemmati-Brivanlou, A. & Harland, R. M. Development 106, 611–617 (1989).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Hemmati-Brivanlou, A., Melton, D. A truncated activin receptor inhibits mesoderm induction and formation of axial structures in Xenopus embryos. Nature 359, 609–614 (1992). https://doi.org/10.1038/359609a0
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/359609a0
This article is cited by
-
Quantitative analysis of transcriptome dynamics provides novel insights into developmental state transitions
BMC Genomics (2022)
-
Brain organoids for the study of human neurobiology at the interface of in vitro and in vivo
Nature Neuroscience (2020)
-
Molecular specification of germ layers in vertebrate embryos
Cellular and Molecular Life Sciences (2016)
-
Global identification of Smad2 and Eomesodermin targets in zebrafish identifies a conserved transcriptional network in mesendoderm and a novel role for Eomesodermin in repression of ectodermal gene expression
BMC Biology (2014)
-
Kinase/phosphatase overexpression reveals pathways regulating hippocampal neuron morphology
Molecular Systems Biology (2010)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.