Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Flattening of the sea-floor depth-age curve as a response to asthenospheric flow

A Correction to this article was published on 01 September 1994


THE flattening of sea-floor depths from the √age dependence predicted by considering the cooling plate as a growing thermal boundary layer is a fundamental constraint on the evolution of oceanic lithosphere1. Previous explanations for the flattening have included reheating from convective instabilities that form beneath lithosphere older than 80 Myr (ref. 2), thermal rejuvenation of lithosphere that passes over stationary hotspots3–5, or a whole-mantle flow forced by two converging plates6. We suggest here that the flattening of old ocean floors can perhaps best be explained as a dynamic phenomenon reflecting flow in asthenosphere underlying the oceanic lithosphere. Applying the model to the Pacific plate, we show that a solution for flow in an asthenosphere low-viscosity channel which is 'consumed' by plate accretion and the subduction of lithosphere at trenches, and replenished by near-ridge upwelling and near-ridge hotspots, generates the observed 1 km of sea-floor flattening for asthenospheric viscosities of 2 × 1018 Pa s and an absolute Pacific plate motion of 100 mm yr−1. Our model can also explain the asymmetric subsidence of the South American and African plates away from the Mid-Atlantic Ridge.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout


  1. Parsons, B. & Sclater, J. J. geophys. Res. 82, 803–827 (1977).

    Article  ADS  Google Scholar 

  2. Parsons, B. & McKenzie, D. J. geophys. Res. 83, 4485–4496 (1978).

    Article  ADS  Google Scholar 

  3. Crough, S. T. Geophys. J. R. astr. Soc. 55, 451–469 (1978).

    Article  ADS  Google Scholar 

  4. Heestand, R. L. & Crough, S. T. J. geophys. Res. 86, 6107–6114 (1981).

    Article  ADS  Google Scholar 

  5. Davies, G. J. geophys. Res. 93, 10467–10480 (1988).

    Article  ADS  Google Scholar 

  6. Ricard, Y., Froidevaux, C. & Fleitout, L. Geophys. J. 93, 477–484 (1988).

    Article  ADS  Google Scholar 

  7. Von Herzen, R. P., Cordery, M. J., Detrick, R. S. & Fang, C. J. geophys. Res. 94, 13783–13799 (1989).

    Article  ADS  Google Scholar 

  8. Stein, C. A. & Abbott, D. H. J. geophys. Res. 96, 16083–16099 (1991).

    Article  ADS  Google Scholar 

  9. Woods, M. T., Lévêque, J.-J. & Okal, E. A. Geophys. Res. Lett. 18, 105–108 (1991).

    Article  ADS  Google Scholar 

  10. Marty, J. C. & Cazenave, A. Earth planet. Sci. Lett. 94, 301–315 (1989).

    Article  ADS  Google Scholar 

  11. Smith, W. H. F. thesis, Columbia Univ. (1990).

  12. Batchelor, G. K. An Introduction to Fluid Dynamics (Cambridge Univ. Press, Cambridge, 1967).

    MATH  Google Scholar 

  13. Schubert, G. & Turcotte, D. L. J. geophys. Res. 77, 945–951 (1972).

    Article  ADS  Google Scholar 

  14. Schubert, G., Froidevaux, C. & Yuen, D. A. J. geophys. Res. 81, 3525–3540 (1976).

    Article  ADS  CAS  Google Scholar 

  15. Chase, C. G. Geophys. J. R. astr. Soc. 56, 1–18 (1979).

    Article  ADS  Google Scholar 

  16. Parmentier, E. M. & Oliver, J. E. Geophys. J. R. astr. Soc. 57, 1–22 (1979).

    Article  ADS  Google Scholar 

  17. Morgan, W. J. Geol. Soc. Am. Mem. 132, 7–22 (1972).

    Google Scholar 

  18. Jurdy, D. & Stephanic, M. Geophys. Res. Lett. 17, 473–496 (1990).

    Article  Google Scholar 

  19. Weinstein, S. A. & Olson, P. L. Geophys. Res. Lett. 16, 433–436 (1989).

    Article  ADS  Google Scholar 

  20. Phipps Morgan, J. & Morgan, W. J. EOS 72, 462 (1991).

    Google Scholar 

  21. Jordan, T. H. Phil. Trans. R. Soc. A301, 359–373 (1981).

    Article  ADS  CAS  Google Scholar 

  22. Hager, B. H. J. geophys. Res. 89, 6003–6015 (1984).

    Article  ADS  Google Scholar 

  23. Hayes, D. E. J. geophys. Res. 93, 2937–2954 (1988).

    Article  ADS  Google Scholar 

  24. Vogt, P. R. & Johnson, G. L. J. geophys. Res. 80, 1399–1428 (1975).

    Article  ADS  Google Scholar 

  25. Marks, K. M., Vogt, P. R. & Hall, S. A. J. geophys. Res. 95, 17325–17337 (1990).

    Article  ADS  Google Scholar 

  26. Klein, E. M., Langmuir, C. H., Zindler, A., Staudigal, H. & Hamelin, B. Nature 333, 623–629 (1988).

    Article  ADS  CAS  Google Scholar 

  27. Forsyth, D. W., Parmentier, E. M. & Bowin, C. EOS 61, 382 (1980).

    Google Scholar 

  28. Buck, W. R. & Parmentier, E. M. J. geophys. Res. 91, 1961–1974 (1986).

    Article  ADS  Google Scholar 

  29. Hager, B. H. & Richards, M. A. Phil. Trans. R. Soc. A328, 309–327 (1989).

    Article  ADS  Google Scholar 

  30. Ricard, Y., Fleitout, L. & Froidevaux, C. Ann. Geophys. 2, 267–286 (1984).

    ADS  Google Scholar 

  31. National Geophysical Data Center EOTPO-5 Bathymetry-Topography Data (NOAA, U.S. Dept. of Commerce, 1988).

  32. Shaw, P. & Cande, S. C. J. geophys. Res. 94, 1961–1974 (1989).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Rights and permissions

Reprints and Permissions

About this article

Cite this article

Morgan, J., Smith, W. Flattening of the sea-floor depth-age curve as a response to asthenospheric flow. Nature 359, 524–527 (1992).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing