Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Surface ozone depletion in Arctic spring sustained by bromine reactions on aerosols

Abstract

NEAR-TOTAL depletion of the ozone in surface air is often observed in the Arctic spring, coincident with high atmospheric concentrations of inorganic bromine1–5. Barrie et al.1 suggested that the ozone depletion was due to a catalytic cycle involving the radicals Br and BrO (ref. 6); however, these species are rapidly converted to the nonradical species HBr, HOBr and BrNO3, quenching ozone loss. McConnell et al.7 proposed that cycling of inorganic bromine between aerosols and the gas phase could maintain sufficiently high levels of Br and BrO to destroy ozone, but they did not specify a mechanism for aerosol-phase production of active bromine species. Here we propose such a mechanism, based on known aqueous-phase chemistry, which rapidly converts HBr, HOBr and BrNO3 back to Br and BrO radicals. This mechanism should be particularly efficient in the presence of the high concentrations of sulphuric acid aerosols observed during ozone depletion events3.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Barrie, L. A., Bottenheim, J. W., Schnell, R. C., Crutzen, P. J. & Rasmussen, R. A. Nature 334, 138–141 (1988).

    Article  ADS  CAS  Google Scholar 

  2. Oltmans, S. J. et al. Atmos. Envir. 23, 2431–2441 (1989).

    Article  CAS  Google Scholar 

  3. Bottenheim, J. W. et al. J. geophys. Res. 95, 18555–18568 (1990).

    Article  ADS  CAS  Google Scholar 

  4. Finlayson-Pitts, B. J., Livingston, F. E. & Berko, H. N. Nature 343, 622–625 (1990).

    Article  ADS  CAS  Google Scholar 

  5. Sturges, W. T. et al. Atmos. Envir. (in the press).

  6. Wofsy, S. C., McElroy, M. B. & Yung, Y. L. Geophys. Res. Lett. 2, 215–218 (1975).

    Article  ADS  CAS  Google Scholar 

  7. McConnell, J. C. et al. Nature 355, 150–152 (1992).

    Article  ADS  CAS  Google Scholar 

  8. DeMore, W. B. et al. JPL Publ. 90–1 (NASA Jet Propulsion Laboratory, Pasadena, 1990).

  9. Eigen, M. & Kustin, K. J. Am. chem. Soc. 84, 1355–1361 (1962).

    Article  CAS  Google Scholar 

  10. Barrie, L. A., den Hartog, G., Bottenheim, J. W. & Landsberger, S. J. atmos. Chem. 9, 101–127 (1989).

    Article  CAS  Google Scholar 

  11. Lazrus, A. L. & Ferek, R. J. Geophys. Res. Lett. 11, 417–419 (1984).

    Article  ADS  CAS  Google Scholar 

  12. Ferek, R. J. et al. Envir. Sci. Technol. 17, 315–324 (1983).

    Article  ADS  CAS  Google Scholar 

  13. Brimblecombe, P. & Clegg, S. L. J. atmos. Chem. 7, 1–18 (1988).

    Article  CAS  Google Scholar 

  14. Hanson, D. R. & Ravishankara, A. R. J. geophys. Res. 96, 17307–17314 (1991).

    Article  ADS  CAS  Google Scholar 

  15. Schwartz, S. E. & Freiberg, J. E. Atmos. Envir. 15, 1129–1144 (1981).

    Article  CAS  Google Scholar 

  16. Lide, D. R. (ed.) Handbook of Chemistry and Physics, 72nd edn, 5–21 (1991).

  17. Logan, J. A., Prather, M. J., Wofsy, S. C. & McElroy, M. B. J. geophys. Res. 86, 7210–7254 (1981).

    Article  ADS  CAS  Google Scholar 

  18. Atkinson, R. Atmos. Envir. 24, 1–41 (1990).

    Article  Google Scholar 

  19. Baulch, D. L. et al. J. phys. Chem. Ref. Data 11, 327–496 (1982).

    Article  ADS  CAS  Google Scholar 

  20. Madronich, S. & Calvert, J. G. J. geophys. Res. 95, 5697–5716 (1990).

    Article  ADS  CAS  Google Scholar 

  21. Fuchs, N. A. & Sutugin, A. G. Int. Rev. Aerosol Phys. Chem. 2, 1–60 (1971).

    CAS  Google Scholar 

  22. Watson, L. R. et al. J. geophys. Res. 95, 5631–5638 (1990).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fan, SM., Jacob, D. Surface ozone depletion in Arctic spring sustained by bromine reactions on aerosols. Nature 359, 522–524 (1992). https://doi.org/10.1038/359522a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/359522a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing