Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Myc and Max proteins possess distinct transcriptional activities

Abstract

THE Myc family proteins are thought to be involved in transcription1,2 because they have both a carboxy-terminal basic–helix–loop–helix–zipper (bHLH-Z) domain, common to a large class of transcription factors3, and an amino-terminal fragment which, for c-Myc, has transactivating function when assayed in chimaeric constructs4. In addition, c-, N- and L-Myc proteins heterodimerize, in vitro and in vivo, with the bHLH-Z protein Max5–8. In vitro, Max homodimerizes but preferentially associates with Myc, which homodimerizes poorly5,6. Furthermore Myc-Max heterodimers specifically bind the nucleotide sequence CACGTG9 with higher affinity than either homodimer alone5. The identification of Max and the specific DNA-binding activities of Myc and Max provides an opportunity for directly testing the transcriptional activities of these proteins in mammalian cells. We report here that Myc overexpression activates, whereas Max overexpression represses, transcription of a reporter gene. Max-induced repression is relieved by overexpression of c-Myc. Repression requires the DNA-binding domain of Max, whereas relief of repression requires the dimerization and transcriptional activation activities of Myc. Both effects require Myc–Max-binding sites in the reporter gene.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kingston, R. E., Baldwin, A. S. & Sharp, P. A. Cell 41, 3–5 (1985).

    Article  CAS  Google Scholar 

  2. Kaddurah-Daouk, R., Greene, J. M., Baldwin, A. S. & Kingston, R. E. Genes Dev. 1, 347–357 (1987).

    Article  CAS  Google Scholar 

  3. Jones, N. Cell 61, 9–11 (1990).

    Article  CAS  Google Scholar 

  4. Kato, G. J., Barrett, J., Villa-Garcia, M. & Dang, C. V. Molec. cell Biol. 10, 5914–5920 (1990).

    Article  CAS  Google Scholar 

  5. Blackwood, E. M. & Eisenman, R. N. Science 251, 1211–1217 (1991).

    Article  ADS  CAS  Google Scholar 

  6. Prendergast, G. C., Lawe, D. & Ziff, E. B. Cell 85, 395–407 (1991).

    Article  Google Scholar 

  7. Blackwood, E. M., Lüscher, B. & Eisenman, R. N. Genes Dev. 6, 71–80 (1992).

    Article  CAS  Google Scholar 

  8. Wenzel, A., Cziepluch, C., Hamann, U., Schümann, J. & Schwab, M. EMBO J. 10, 3703–3712 (1991).

    Article  CAS  Google Scholar 

  9. Blackwell, T. K., Kretzner, L., Blackwood, E. M., Eisenman, R. N. & Weintraub, H. Science 250, 1149–1151 (1990).

    Article  ADS  CAS  Google Scholar 

  10. Hann, S. R., Thompson, C. B. & Eisenman, R. N. Nature 314, 366–369 (1985).

    Article  ADS  CAS  Google Scholar 

  11. Gregor, P. D., Sawadogo, M. & Roeder, R. G. Genes Dev. 4, 1730–1740 (1990).

    Article  CAS  Google Scholar 

  12. Beckman, H., Su, L.-K. & Kadesch, T. Genes Dev. 4, 167–179 (1990).

    Article  Google Scholar 

  13. Chiu, R. et al. Cell 54, 541–552 (1988).

    Article  CAS  Google Scholar 

  14. Boyle, W. J. et al. Cell 64, 573–584 (1991).

    Article  CAS  Google Scholar 

  15. Kato, G. J., Lee, W. M. F., Chen, L. & Dang, C. V. Genes Dev. 6, 81–92 (1992).

    Article  CAS  Google Scholar 

  16. Hann, S. R. & Eisenman, R. N. Molec. cell. Biol. 4, 2486–2497 (1984).

    Article  CAS  Google Scholar 

  17. Waters, C.M., Littlewood, T. D., Hancock, D. C., Moore, J. P. & Evan, G. I. Oncogene 6, 797–805 (1991).

    CAS  PubMed  Google Scholar 

  18. Kelly, K., Cochran, B. H., Stiles, C. D. & Leder, P. Cell 35, 603–610 (1983).

    Article  CAS  Google Scholar 

  19. Dean, M. et al. J. biol. Chem. 261, 9161–9166 (1986).

    CAS  PubMed  Google Scholar 

  20. Ptashne, M. Nature 335, 683–689 (1988).

    Article  ADS  CAS  Google Scholar 

  21. Rustgi, A. K., Dyson, N. & Bernards, R. Nature 352, 541–544 (1991).

    Article  ADS  CAS  Google Scholar 

  22. Harland, R. & Weintraub, H. J. cell. Biol. 101, 1094–1099 (1985).

    Article  CAS  Google Scholar 

  23. Gorman, C. M., Moffat, L. F. & Howard, B. H. Molec. cell. Biol. 2, 1044–1051 (1982).

    Article  CAS  Google Scholar 

  24. Halazonetis, T. D. & Kandil, A. N. Proc. natn. Acad. Sci. U.S.A. 88, 6162–6166 (1991).

    Article  ADS  CAS  Google Scholar 

  25. Nyborg, J. K. et al. J. biol. Chem. 265, 8237–8242 (1990).

    CAS  PubMed  Google Scholar 

  26. Geballe, A. P. & Mocarski, E. S. J. Virol. 62, 3334–3340 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Berberich, S. J. & Cole, M. D. Genes Dev. 6, 166–176 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kretzner, L., Blackwood, E. & Eisenman, R. Myc and Max proteins possess distinct transcriptional activities. Nature 359, 426–429 (1992). https://doi.org/10.1038/359426a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/359426a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing