Abstract
A UNIVERSE whose density is dominated by cold dark matter (CDM) has been considered the standard model for large-scale structure formation1, but it has had difficulty in matching the relatively quiet velocity field of galaxies2 and the observed structure on very large scales3. By contrast, models with a mixture of COM and hot dark matter (HDM) have more power on large scales4–9, and seem more able to fit the excess large-scale power seen in galaxy surveys3 and the microwave background fluctuations recently measured by COBE10,11. Using high-resolution numerical simulations, we examine the formation of structure in a mixed dark matter model containing 70% COM and 30% HDM, the latter in the form of massive neutrinos. This model behaves like a CDM model in which the biasing factor (the relative magnitude of structure in the dark and visible components) varies from 2.5 on small scales to <1 on large scales, and can provide a consistent explanation of both the shape of the observed fluctuation spectrum and the difference in estimates of the cosmic density, Ω, on small and large scales.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Pionic dark matter
Journal of High Energy Physics Open Access 26 February 2014
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout
References
Davis, M., Efstathiou, G., Frenk, C. & White, S. Nature 356, 489–491 (1992).
Davis, M., Efstathiou, G. P. E., Frenk, C. S. & White, S. D. M. Astrophys. J. 292, 371–394 (1985).
Maddox, S. J., Efstathiou, G. P. E., Sutherland, W. & Loveday, J. Mon. Not. R. astr. Soc. 242, 43p–47p (1990).
Holtzman, J. A. Astrophys. J. Suppl. Ser. 71, 1–24 (1989).
Shafi, Q. & Stecker, F. W. Phys. Rev. Lett. 53, 1292–1295 (1984).
Valdarnini, R. & Bonometto, S. A. Astr. Astrophys. 146, 235–241 (1985).
Achilli, S., Occhionero, F. & Scaramella, R. Astrophys. J. 299, 577–582 (1985).
van Dalen, T. & Schaefer, R. K. Astrophys. J. (in the press).
Schaefer, R. K. & Shafi, Q. Nature 359, 199 (1992).
Smoot, G. F. et al. Astrophys. J. 396, L1–L6 (1992).
Wright, E. L. et al. Astrophys. J. 396, L13–L18 (1992).
Gelb, J. thesis, Massachusetts Inst. Technol. (1991).
White, S. D. M., Davis, M., Efstathiou, G. P. E. & Frenk, C. S. Nature 330, 451–453 (1987).
Bardeen, J. M., Bond, J. R., Kaiser, N. & Szalay, A. S. Astrophys. J. 304, 15–61 (1986).
Frenk, C. S. Phys. Script. T36, 70–87 (1991).
Babul, A. & White, S. D. M. Mon. Not. R. astr. Soc. 253, 31p–34p (1991).
Bower, R. G., Coles, P., Frenk, C. S. & White, S. D. M. Mon Not. R. astr. Soc. (in the press).
Alimi, J. M., Vals Gabaud, D. & Blanchard, A. Astr. Astrophys. 206, L11–L14 (1988).
Couchman, H. M. P. & Carlberg, R. G. Astrophys. J. 389, 453–463 (1992).
Faber, S. M. & Gallagher, J. S. A. Rev. Astr. Astrophys. 17, 135–187 (1979).
Davis, M. & Peebles, P. J. E. Astrophys. J. 267, 465–482; (1983).
Strauss, M. A. & Davis, M. in Large-Scale Motions in the Universe, Proc. Vatican Study Week 1987, 255–274 (Princeton Univ. Press, Princeton, 1988).
Kaiser, N. et al. Mon. Not. R. astr. Soc. 252, 1–12 (1992).
Dekel, A. in Observational Tests of Cosmological Inflation (eds Shanks, T. et al.) 365–373 (NATO/ASI, 1990).
Efstathiou, G. P. E., Sutherland, W. & Maddox, S. J. Nature 348, 705–707 (1990).
Bond, J. R., Efstathiou, G. P. E. & Silk, J. Phys. Rev. Lett. 45, 1980–1983 (1980).
Bond, J. R. & Szalay, A. S. Astrophys. J. 274, 443–468 (1983).
Scherrer, R. J. & Bertschinger, E. Astrophys. J. 381, 349–360 (1991).
Efstathiou, G., Frenk, C., White, S. & Davis, M. Astrophys. J. Suppl. Ser. 57, 241–260 (1985).
Frenk, C. S., White, S. D. M., Davis, M. & Efstathiou, G. P. E. Astrophys. J. 327, 507–525 (1988).
Ostriker, J. & Suto, Y. Astrophys. J. 348, 378–382 (1990).
Taylor, A. N. & Rowan-Robinson, M. Nature 359, 396–399 (1992).
Bahcall, J. N. & Bethe, H. A. Phys. Rev. Lett. 65, 2233–2235 (1990).
Bludman, S. A., Kennedy, D. C. & Langacker, P. G. Phys. Rev. D45, 1810–1813 (1992).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Davis, M., Summers, F. & Schlegel, D. Large-scale structure in a universe with mixed hot and cold dark matter. Nature 359, 393–396 (1992). https://doi.org/10.1038/359393a0
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/359393a0
This article is cited by
-
Pionic dark matter
Journal of High Energy Physics (2014)
-
Futurev τ oscillation experiments and present data
Zeitschrift für Physik C: Particles and Fields (1996)
-
Cosmologies with massive neutrinos and large value of hubble constant
Il Nuovo Cimento C (1995)
-
Evidence against dissipation-less dark matter from observations of galaxy haloes
Nature (1994)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.