Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Volcanic winter and accelerated glaciation following the Toba super-eruption

Abstract

THE eruption of Toba in Sumatra 73,500 years ago was the largest known explosive volcanic event in the late Quaternary1. It could have lofted about 1015 g each of fine ash and sulphur gases to heights of 27–37 km, creating dense stratospheric dust and aerosol clouds. Here we present model calculations that investigate the possible climatic effects of the volcanic cloud. The increase in atmospheric opacity might have produced a 'volcanic winter'2—a brief, pronounced regional and perhaps hemispheric cooling caused by the volcanic dust—followed by a few years with maximum estimated annual hemispheric surface-temperature decreases of 3–5 °C. The eruption occurred during the stage 5a-4 transition of the oxygen isotope record, a time of rapid ice growth and falling sea level3. We suggest that the Toba eruption may have greatly accelerated the shift to glacial conditions that was already underway, by inducing perennial snow cover and increased sea-ice extent at sensitive northern latitudes. As the onset of climate change may have helped to trigger the eruption itself4, we propose that the Toba event may exemplify a more general climate–volcano feedback mechanism.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Chesner, C. A. et al. Geology 19, 200–203 (1991).

    ADS  Article  Google Scholar 

  2. 2

    Rampino, M. R., Self, S. & Stothers, R. B. A. Rev. Earth planet. Sci. 16, 73–99 (1988).

    ADS  CAS  Article  Google Scholar 

  3. 3

    Martinson, D. G. et al. Quat Res. 7, 1–29 (1987).

    ADS  Article  Google Scholar 

  4. 4

    Rampino, M. R., Self, S. & Fairbridge, R. W. Science 206, 826–828 (1979).

    ADS  CAS  Article  Google Scholar 

  5. 5

    Ledbetter, M. T. & Sparks, R. S. J. Geology 7, 240–244 (1979).

    ADS  Article  Google Scholar 

  6. 6

    Woods, A. W. & Wohletz, K. H. Nature 350, 225–227 (1991).

    ADS  Article  Google Scholar 

  7. 7

    Pinto, J. P., Turco, R. P. & Toon, O. B. J. geophys. Res. 94, 11165–11174 (1989).

    ADS  Article  Google Scholar 

  8. 8

    Stothers, R. B., Wolff, J. A., Self, S. & Rampino, M. R. Geophys. Res. Lett. 13, 725–728 (1986).

    ADS  Article  Google Scholar 

  9. 9

    Palais, J. M. & Sigurdsson, H. Am. geophys. Un. geophys. Monogr. 52, 31–52 (1989).

    Google Scholar 

  10. 10

    Turco, R. P., Toon, O. B., Ackerman, T. P., Pollack, J. B. & Sagan, C. Science 247, 166–170 (1990).

    ADS  CAS  Article  Google Scholar 

  11. 11

    Covey, C., Schneider, S. H. & Thompson, S. Nature 308, 21–25 (1984).

    ADS  CAS  Article  Google Scholar 

  12. 12

    National Research Council The Effects on the Atmosphere of a Major Nuclear Exchange (National Academy of Sciences, Washington DC, 1985).

  13. 13

    Ruddiman, W. F. & Mclntyre, A. Science 204, 173–175 (1979).

    ADS  CAS  Article  Google Scholar 

  14. 14

    Heinrich, H. Quat. Res. 29, 142–152 (1988).

    Article  Google Scholar 

  15. 15

    Sancetta, C., Imbrie, J., Kipp, N. G., Mclntyre, A. & Ruddiman, W. F. Quat. Res. 2, 363–367 (1972).

    Article  Google Scholar 

  16. 16

    Koerner, R. M. & Fisher, D. A. in Late Quaternary Environments: Eastern Canadian Arctic, Baffin Bay and West Greenland (ed. Andrews, J. T.) 309–327 (Allen and Unwin, London, 1985).

    Google Scholar 

  17. 17

    Woillard, G. & Mook, W. G. Science 215, 159–161 (1982).

    ADS  CAS  Article  Google Scholar 

  18. 18

    Guiot, J. Palaeogeogr. Palaeoclimatol. Palaeoecol. 80, 49–69 (1990).

    Article  Google Scholar 

  19. 19

    Streeter, S. S. & Shackleton, N. J. Science 203, 168–171 (1979).

    ADS  CAS  Article  Google Scholar 

  20. 20

    Jouzel, J. et al. Nature 329, 403–407 (1987).

    ADS  CAS  Article  Google Scholar 

  21. 21

    Barnola, J. M. et al. Nature 329, 408–414 (1987).

    ADS  CAS  Article  Google Scholar 

  22. 22

    DeAngelis, M., Barkov, N. I. & Petrov, V. N. Nature 325, 318–321 (1987).

    ADS  Article  Google Scholar 

  23. 23

    Harvey, L. D. D. Nature 334, 333–335 (1988).

    ADS  Article  Google Scholar 

  24. 24

    Legrand, M. R., Delmas, R. J. & Charlson, R. J. Nature 334, 418–420 (1988).

    ADS  CAS  Article  Google Scholar 

  25. 25

    Loewe, F. Arct. Alp. Res. 3, 331–344 (1971).

    Article  Google Scholar 

  26. 26

    Andrews, J. T. & Barry, R. G. A. Rev. Earth planet. Sci. 6, 205–228 (1978).

    ADS  Article  Google Scholar 

  27. 27

    Williams, J. J. appl. Meteorol. 14, 137–152 (1975).

    ADS  Article  Google Scholar 

  28. 28

    Koerner, R. M. Quat. Res. 13, 153–159 (1980).

    Article  Google Scholar 

  29. 29

    Jacoby, G. C., Ivanciu, I. S. & Ulan, L. D. Palaeogeogr. Palaeoclimatol. Palaeoecol. 64, 69–78 (1988).

    Article  Google Scholar 

  30. 30

    Schneider, S. H. Clim. Change 5, 111–113 (1983).

    ADS  Article  Google Scholar 

  31. 31

    Wilson, C. Syllogeus 55, 147–190 (1985).

    Google Scholar 

  32. 32

    Fichefet, T. et al. Phil. Trans. R. Soc. Lond. A39, 249–261 (1989).

    Article  Google Scholar 

  33. 33

    Deblonde, G. & Peltier, W. R. Clim. Dynam. 5, 103–110 (1990).

    ADS  Article  Google Scholar 

  34. 34

    Chappell, J. & Shackleton, N. J. Nature 324, 137–140 (1986).

    ADS  CAS  Article  Google Scholar 

  35. 35

    Oglesby, R. J. Clim. Dynam. 4, 219–235 (1990).

    ADS  Article  Google Scholar 

  36. 36

    Rind, D., Peteet, D. & Kukla, G. J. geophys. Res. 94, 12851–12871 (1989).

    ADS  Article  Google Scholar 

  37. 37

    Ruddiman, W. F., Mclntyre, A., Niebler-Hunt, V. & Durazzi, J. T. Quat. Res. 13, 33–64 (1980).

    Article  Google Scholar 

  38. 38

    Matteucci, G. Clim. Dynam. 6, 67–81 (1991).

    ADS  Article  Google Scholar 

  39. 39

    Miller, G. H. & Kaufman, D. S. Norsk Geol. Tidssk. 71, 149–151 (1991).

    Google Scholar 

  40. 40

    Ruddiman, W. F. & Mclntyre, A. Geol. Soc. Am. Bull. 93, 1273–1279 (1982).

    ADS  Article  Google Scholar 

  41. 41

    Dawson, A. Ice Age Earth: Late Quaternary Geology and Climate, 180–198 (Routledge, London, 1991).

    Google Scholar 

  42. 42

    Paterne, M. et al. Earth planet. Sci. Lett. 98, 166–174 (1990).

    ADS  Article  Google Scholar 

  43. 43

    Paterne, M. et al. IAVCEI Progr. Abstr., Gen. Assembly, Vienna, IUGG 20, 6 (1991).

    Google Scholar 

  44. 44

    Sioholm, J., Sejrup, H. P. & Furnes, H. J. Quat. Sci. 6, 159–173 (1991).

    Article  Google Scholar 

  45. 45

    Guiot, J. et al. Nature 338, 309–313 (1989).

    ADS  Article  Google Scholar 

  46. 46

    Heller, F., Xiuming, L., Tungsheng, L. & Tongchun, X. Earth planet. Sci. Lett. 103, 301–310 (1991).

    ADS  CAS  Article  Google Scholar 

  47. 47

    Ninkovich, D. et al. Nature 276, 574–577 (1978).

    ADS  CAS  Article  Google Scholar 

  48. 48

    Berger, A. Quat. Res. 9, 139–167 (1978).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rampino, M., Self, S. Volcanic winter and accelerated glaciation following the Toba super-eruption. Nature 359, 50–52 (1992). https://doi.org/10.1038/359050a0

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing