Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans


Experimental introduction of RNA into cells can be used in certain biological systems to interfere with the function of an endogenous gene1,2. Such effects have been proposed to result from a simple antisense mechanism that depends on hybridization between the injected RNA and endogenous messenger RNA transcripts. RNA interference has been used in the nematode Caenorhabditis elegans to manipulate gene expression3,4. Here we investigate the requirements for structure and delivery of the interfering RNA. To our surprise, we found that double-stranded RNA was substantially more effective at producing interference than was either strand individually. After injection into adult animals, purified single strands had at most a modest effect, whereas double-stranded mixtures caused potent and specific interference. The effects of this interference were evident in both the injected animals and their progeny. Only a few molecules of injected double-stranded RNA were required per affected cell, arguing against stochiometric interference with endogenous mRNA and suggesting that there could be a catalytic or amplification component in the interference process.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Genes used to study RNA-mediated genetic interference in C.elegans.
Figure 2: Analysis of RNA-interference effects in individual cells.
Figure 3: Effects of mex-3 RNA interference on levels of the endogenous mRNA.


  1. 1

    Izant, J. & Weintraub, H. Inhibition of thymidine kinase gene expression by antisense RNA: a molecular approach to genetic analysis. Cell 36, 1007–1015 (1984).

    CAS  Article  Google Scholar 

  2. 2

    Nellen, W. & Lichtenstein, C. What makes an mRNA anti-sense-itive? Trends Biochem. Sci. 18, 419–423 (1993).

    CAS  Article  Google Scholar 

  3. 3

    Fire, A., Albertson, D., Harrison, S. & Moerman, D. Production of antisense RNA leads to effective and specific inhibition of gene expression in C. elegans muscle. Development 113, 503–514 (1991).

    CAS  PubMed  Google Scholar 

  4. 4

    Guo, S. & Kemphues, K. par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed. Cell 81, 611–620 (1995).

    CAS  Article  Google Scholar 

  5. 5

    Seydoux, G. & Fire, A. Soma-germline asymmetry in the distributions of embryonic RNAs in Caenorhabditis elegans. Development 120, 2823–2834 (1994).

    CAS  PubMed  Google Scholar 

  6. 6

    Ausubel, F. et al. Current Protocols in Molecular Biology (Wiley, New York, (1990)).

    Google Scholar 

  7. 7

    Brenner, S. The genetics of Caenorhabditis elegans. Genetics 77, 71–94 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8

    Moerman, D. & Baillie, D. Genetic organization in Caenorhabditis elegans: fine structure analysis of the unc-22 gene. Genetics 91, 95–104 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9

    Benian, G., L'Hernault, S. & Morris, M. Additional sequence complexity in the muscle gene, unc-22, and its encoded protein, twitchin, of Caenorhabiditis elegans. Genetics 134, 1097–1104 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10

    Proud, C. PKR: a new name and new roles. Trends Biochem. Sci. 20, 241–246 (1995).

    CAS  Article  Google Scholar 

  11. 11

    Epstein, H., Waterston, R. & Brenner, S. Amutant affecting the heavy chain of myosin in C. elegans. J. Mol. Biol. 90, 291–300 (1974).

    CAS  Article  Google Scholar 

  12. 12

    Karn, J., Brenner, S. & Barnett, L. Protein structural domains in the C. elegans unc-54 myosin heavy chain gene are not separated by introns. Proc. Natl Acad. Sci. USA 80, 4253–4257 (1983).

    ADS  CAS  Article  Google Scholar 

  13. 13

    Doniach, T. & Hodgkin, J. A. Asex-determining gene, fem-1, required for both male and hermaphrodite development in C. elegans. Dev. Biol. 106, 223–235 (1984).

    CAS  Article  Google Scholar 

  14. 14

    Spence, A., Coulson, A. & Hodgkin, J. The product of fem-1, a nematode sex-determining gene, contains a motif found in cell cycle control proteins and receptors for cell–cell interactions. Cell 60, 981–990 (1990).

    CAS  Article  Google Scholar 

  15. 15

    Krause, M., Fire, A., Harrison, S., Priess, J. & Weintraub, H. CeMyoD accumulation defines the body wall muscle cell fate during C. elegans embryogenesis. Cell 63, 907–919 (1990).

    CAS  Article  Google Scholar 

  16. 16

    Chen, L., Krause, M., Sepanski, M. & Fire, A. The C. elegans MyoD homolog HLH-1 is essential for proper muscle function and complete morphogenesis. Development 120, 1631–1641 (1994).

    CAS  PubMed  Google Scholar 

  17. 17

    Dibb, N. J., Maruyama, I. N., Krause, M.(Author: OK?) & Karn, J. Sequence analysis of the complete Caenorhabditis elegans myosin heavy chain gene family. J. Mol. Biol. 205, 603–613 (1989).

    CAS  Article  Google Scholar 

  18. 18

    Sulston, J., Schierenberg, E., White, J. & Thomson, J. The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev. Biol. 100, 64–119 (1983).

    CAS  Article  Google Scholar 

  19. 19

    Sulston, J. & Horvitz, H. Postembyonic cell lineages of the nematode Caenorhabiditis elegans. Dev. Biol. 82, 41–55 (1977).

    Article  Google Scholar 

  20. 20

    Draper, B. W., Mello, C. C., Bowerman, B., Hardin, J. & Priess, J. R. MEX-3 is a KH domain protein that regulates blastomere identity in early C. elegans embryos. Cell 87, 205–216 (1996).

    CAS  Article  Google Scholar 

  21. 21

    Sulston, J. et al. The C. elegans genome sequencing project: a beginning. Nature 356, 37–41 (1992).

    ADS  Article  Google Scholar 

  22. 22

    Matzke, M. & Matzke, A. How and why do plants inactivate homologous (trans) genes? Plant Physiol. 107, 679–685 (1995).

    CAS  Article  Google Scholar 

  23. 23

    Ratcliff, F., Harrison, B. & Baulcombe, D. Asimilarity between viral defense and gene silencing in plants. Science 276, 1558–1560 (1997).

    CAS  Article  Google Scholar 

  24. 24

    Latham, K. Xchromosome imprinting and inactivation in the early mammalian embryo. Trends Genet. 12, 134–138 (1996).

    CAS  Article  Google Scholar 

  25. 25

    Chalfie, M., Tu, Y., Euskirchen, G., Ward, W. & Prasher, D. Green fluorescent protein as a marker for gene expression. Science 263, 802–805 (1994).

    ADS  CAS  Article  Google Scholar 

  26. 26

    Clark, D., Suleman, D., Beckenbach, K., Gilchrist, E. & Baillie, D. Molecular cloning and characterization of the dpy-20 gene of C. elegans. Mol. Gen. Genet. 247, 367–378 (1995).

    CAS  Article  Google Scholar 

  27. 27

    Mello, C. & Fire, A. DNA transformation. Methods Cell Biol. 48, 451–482 (1995).

    CAS  Article  Google Scholar 

Download references


We thank A. Grishok, B. Harfe, M. Hsu, B. Kelly, J. Hsieh, M. Krause, M. Park, W. Sharrock, T. Shin, M. Soto and H. Tabara for discussion. This work was supported by the NIGMS (A.F.) and the NICHD (C.M.), and by fellowship and career awards from the NICHD (M.K.M.), NIGMS (S.K.), PEW charitable trust (C.M.), American Cancer Society (C.M.), and March of Dimes (C.M.).

Author information



Corresponding author

Correspondence to Andrew Fire.

Supplementary Information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fire, A., Xu, S., Montgomery, M. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811 (1998). https://doi.org/10.1038/35888

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.