Letter | Published:

Predominant naturally processed peptides bound to HLA-DR1 are derived from MHC-related molecules and are heterogeneous in size

Abstract

PEPTIDES bound to class I molecules are 8–10 amino acids long, and possess a binding motif representative of peptides that bind to a given class I allele1–4. In the only published study of naturally processed peptides bound to class II molecules (mouse I–Ab and I–Eb), these peptides were longer (13–17 amino acids) and had heterogenous carboxy terminals but precise ammo-terminal truncations5. Here we report the characterization of acid-eluted peptides bound to HLA-DR1 by high-performance liquid chromatography, mass spectrometry and microsequencing analyses. The relative molecular masses of the peptides varied between 1,602 and 2,996 (13–25 residues), the most abundant individual Mr values being between 1,700 and 1,800, corresponding to an average peptide length of 15 residues. Complete sequence data were obtained for twenty peptides derived from five epitopes, of which all but one were from self proteins. These peptides represented sets nested at both the N- and C-terminal ends. Binding experiments confirmed that all of the isolated peptides had high affinity for the groove of DR1. Alignment of the peptides bound to HLA-DR1 and the sequences of 35 known HLA-DRl-binding peptides revealed a putative motif. Although peptides bound to class II molecules may have some related features (due to the nonpolymorphic HLA-DR α-chain), accounting for degenerate binding to different alleles6, particular amino acids in the HLA-DR β-chains presumably define allelic specificity of peptide binding.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Van Bleek, G. M. & Nathenson, S. G. Nature 348, 213–216 (1990).

  2. 2

    Rotzschke, O. et al. Nature 348, 252–254 (1990).

  3. 3

    Jardetzky, T. S., Lane, W. S., Robinson, R. A., Madden, D. R. & Wiley, D. C. Nature 353, 326–329 (1991).

  4. 4

    Hunt, D. F. et al. Science 255, 1261–1263 (1992).

  5. 5

    Rudensky, A. Y., Preston-Hurlburt, P., Hong, S.-C., Barlow, A. & Janeway, C. A. Nature 353, 622–627 (1991).

  6. 6

    O'Sullivan, D. et al. J. Immun. 145, 1799–1808 (1990).

  7. 7

    Gorga, J. C., Brown, J. H., Jardetzky, T., Wiley, D. C. & Strominger, J. L. Res. Immun. 142, 401–407 (1991).

  8. 8

    Lane, W. S., Galat, A., Harding, M. W. & Schreiber, S. L. J. Prot. Chem. 10, 151–160 (1991).

  9. 9

    Pearson, W. R. & Lipman, D. J. Proc. natn. Acad. Sci. U.S.A. 85, 2444–2448 (1988).

  10. 10

    Chen, B. P., Madrigal, A. & Parham, P. J. exp. Med. 172, 779–783 (1990).

  11. 11

    Cresswell, P. Proc. natn. Acad. Sci. U.S.A. 82, 8188–8192 (1985).

  12. 12

    Neefjes, J. J., Stollorz, V., Peters, P. J., Geuze, H. J. & Ploegh, H. L. Cell 61, 171–183 (1990).

  13. 13

    Guagliardi, L. E. et al. Nature 343, 133–139 (1990).

  14. 14

    Jones, P. P., Murphy, D. B., Hewgill, D. & McDevitt, H. O. Molec. Immun. 16, 51–60 (1978).

  15. 15

    Roche, P. A. & Cresswell, P. Nature 345, 615–618 (1990).

  16. 16

    Thomas, L. J., Nguyen, Q. V., Elliott, W. L. & Humphreys, R. E. J. Immun. 140, 2670–2675 (1988).

  17. 17

    Roche, P. A. & Cresswell, P. Proc. natn. Acad. Sci. U.S.A. 88, 3150–3154 (1991).

  18. 18

    Roche, P. A. & Cresswell, P. J. Immun. 144, 1849–1856 (1990).

  19. 19

    Rothbard, J. B. et al. Cell 52, 515–523 (1988).

  20. 20

    Stern, L. J. & Wiley, D. C. Cell 68, 465–477 (1992).

  21. 21

    Sadegh-Nasseri, S. & Germain, R. N. Nature 353, 167–170 (1991).

  22. 22

    Dornmair, K., Rothenhausler, B. & McConnell, H. M. Cold Spring Harb. Symp. quant. Biol. 54, 409–415 (1989).

  23. 23

    Springer, T. A., Kaufman, J. F., Siddoway, L. A., Mann, D. L. & Strominger, J. L. J. biol. Chem. 252, 6201–6207 (1977).

  24. 24

    Falk, K., Rotzschke, O., Stevanovic, S., Jung, G. & Rammensee, H. Nature 351, 290–296 (1991).

  25. 25

    Guttinger, M. et al. Int. Immun. 3, 899–906 (1991).

  26. 26

    Hill, C. M., Hayball, J. D., Allison, A. A. & Rothband, J. B. J. Immun. 147, 189–197 (1991).

  27. 27

    Guttinger, M. et al. EMBO J. 7, 2555–2558 (1988).

  28. 28

    Harris, P. E., Liu, Z. & Suciu-Foca, N. J. Immun. 148, 2169–2174 (1992).

  29. 29

    Latron, F. et al. Proc. natn. Acad. Sci. U.S.A. 88, 11325–11329 (1991).

  30. 30

    Brown, J. H. et al. Nature 332, 845–850 (1988).

  31. 31

    Rothbard, J. B. & Taylor, W. R. EMBO J. 7, 93–100 (1988).

  32. 32

    Kropshofer, H., Bohlinger, I., Max, H. & Kalbacher, H. Biochemistry 30, 9177–9187 (1991).

  33. 33

    Jardetzky, T. S. et al. EMBO J. 9, 1797–1803 (1990).

  34. 34

    De Magistris, M. T. et al. Proc. natn. Acad. Sci. U.S.A. 89, 2990–2994 (1992).

  35. 35

    Donermeyer, D. L. & Allen, P. M. J. Immun. 142, 1063–1068 (1989).

  36. 36

    Gorga, J. C., Horejsi, V., Johnson, D. R., Raghupathy, R. & Strominger, J. L. J. biol. Chem. 262, 16087–16094 (1987).

  37. 37

    Hail, M. et al. in Biological Mass Spectrometry (eds Burlingame, A. L. & McCloskey, J. A.) 101–115 (Elsevier, Amsterdam, 1990).

  38. 38

    Hunt, D. F. et al. Science 256, 1817–1820 (1992).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.