Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Phytoplankton productivity in the North Pacific ocean since 1900 and implications for absorption of anthropogenic CO2

Abstract

THE world's carbon budget has not been in steady state since the beginning of the Industrial Revolution1. At present, carbon dioxide released by anthropogenic activities adds about 7±1.2 gigatonnes (Gt)Cyr−1 to the atmosphere, of which about 2Gt Cyr−1 is thought to be sequestered in the oceans2. In the steady state, phytoplankton fix about 35–50 Gt C yr−1, representing a significant component of the natural carbon cycle1. If ocean productivity were changing, these biological processes could have a significant influence on anthropogenic CO2 levels by drawing down the CO2 concentration in surface waters and increasing the concentration gradient across the air–sea interface1,3,4. The question of productivity changes is unresolved, however2,5,6. Venrick et al.7 reported that phytoplankton chlorophyll concentrations had roughly doubled in the central North Pacific gyre between 1965 and 1985. Here we use historical records of Secchi depth data to investigate whether such dramatic changes in phytoplankton biomass have occurred throughout the North Pacific ocean during this century. We find that, although very minor changes may have occurred in this basin over the past 70 years, they are too small to have a significant effect on the rise in atmospheric CO2 concentrations.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Intergovernmental Panel on Climate Change Working Group I Climate Change, the IPCC Scientific Assessment (Cambridge Univ. Press 1990).

  2. 2

    Sarmiento, J. L. in Primary Productivity and Biogeochemical Cycles in the Sea (eds Falkowski, P. G. & Woodhead, A. D.) 317–332 (Plenum, New York, 1992).

    Book  Google Scholar 

  3. 3

    Watson, A. J., Robinson, C., Robinson, J. E., Williams, P. LeB. & Fasham, M. J. R. Nature 350, 50–53 (1991).

    ADS  CAS  Article  Google Scholar 

  4. 4

    Smith, W. O. Jr et al. Nature 352, 514–516 (1991).

    ADS  Article  Google Scholar 

  5. 5

    Peng, T-H. & Broecker, W. S. J. geophys. Res. 89, 8170–8180 (1984).

    ADS  CAS  Article  Google Scholar 

  6. 6

    Smith, S. V. & MacKenzie, F. T. Global biogeochem. Cycles 5, 189–190 (1991).

    ADS  CAS  Article  Google Scholar 

  7. 7

    Venrick, E. L., McGowan, J. A., Cayan, D. R. & Hayward, T. L. Science 238, 70–72 (1987).

    ADS  CAS  Article  Google Scholar 

  8. 8

    Secchi, A. Sul Moto Ondoso del Mare e su le Correnti di esso Specialmente Auquelle Littorali, 2nd Edn, 258–288 (1886). (Engl. transl.) Department of the Navy, Office of Chief of Naval Operations, ONI Transl. A-655, Op-923 M4B.

    Google Scholar 

  9. 9

    Gordon, H. R. & Wouters, A. W. Appl. Opt. 17, 3341–3343 (1978).

    ADS  CAS  Article  Google Scholar 

  10. 10

    Preisendorfer, R. W. Limnol. Oceanogr. 31, 909–926 (1986).

    ADS  CAS  Article  Google Scholar 

  11. 11

    Kirk, J. T. O. Light and Photosynthesis in Aquatic Ecosystems (Cambridge Univ. Press, New York, 1983).

    Google Scholar 

  12. 12

    Simonot, J. Y. & Le Treut, H. J. geophys. Res. 91, 6642–6646 (1986).

    ADS  Article  Google Scholar 

  13. 13

    Lewis, M. R., Kuring, N. & Yentsch, C. J. geophys. Res. 93, 6847–6856 (1988).

    ADS  Article  Google Scholar 

  14. 14

    Nolten, J. W. thesis, California State College at Moss Landing (1980).

  15. 15

    Megard, R. O. & Berman, T. Limnol. Oceanogr. 34, 1640–1655 (1989).

    ADS  Article  Google Scholar 

  16. 16

    Gordon, H. R., Clark, D. K., Mueller, J. L. & Hovis, W. A. Science 210, 63–66 (1980).

    ADS  CAS  Article  Google Scholar 

  17. 17

    Morel, A. & Prieur, L. Limnol. Oceanogr. 22, 709–722 (1977).

    ADS  Article  Google Scholar 

  18. 18

    Cliff, A. D. & Ord, J. K. Spatial Processes: Models and Applications (Pion, London, 1981).

    MATH  Google Scholar 

  19. 19

    Mantle, N. Cancer Res. 27, 209–220 (1967).

    Google Scholar 

  20. 20

    Morel, A. & Berthon, J-F. Limnol. Oceanogr. 34, 1545–1562 (1989).

    ADS  CAS  Article  Google Scholar 

  21. 21

    Eppley, R. W., Stewart, E., Abbott, M. R. & Heyman, U. J. Plankt. Res. 7, 57–70 (1985).

    Article  Google Scholar 

  22. 22

    Chavez, F. P. & Barber, R. T. Deep-Sea Res. 34, 1229–1243 (1987).

    ADS  Article  Google Scholar 

  23. 23

    Berger, W. H., Fischer, K., Lai, C. & Wu, G. Ocean Productivity and Organic Carbon Flux, Part I Scripps Inst. Oceanogr. Ref. 87-30 (Univ. California, San Diego, La Jolla, 1987).

    Google Scholar 

  24. 24

    Barber, R. T. in Primary Productivity and Biogeochemical Cycles in the Sea (eds Falkowski, P. G. & Woodhead, A. D.) 89–106 (Plenum, New York, 1992).

    Book  Google Scholar 

  25. 25

    Martin, J. H. in Primary Productivity and Biogeochemical Cycles in the Sea (eds Falkowski, P. G. & Woodhead, A. D.) 123–136 (Plenum, New York, 1992).

    Book  Google Scholar 

  26. 26

    Martin, J. H. Paleoceanography 5, 1–13 (1990).

    ADS  Article  Google Scholar 

  27. 27

    Sarmiento, J. & Orr, J. Limnol. Oceanogr. 36, 1928–1950 (1991).

    ADS  CAS  Article  Google Scholar 

  28. 28

    Peierls, B. L., Caraco, N. F., Pace, M. L. & Cole, J. J. Nature 350, 386–387 (1991).

    ADS  Article  Google Scholar 

  29. 29

    Walsh, J. J. Nature 350, 53–56 (1991).

    ADS  CAS  Article  Google Scholar 

  30. 30

    Walsh, J. J. On the Nature of Continental Shelves 520 (Academic, New York, 1988).

    Google Scholar 

  31. 31

    Anderson, R. F. et al. Cont. Shelf Res. (in the press).

  32. 32

    Rowe, G. T. et al. Nature 324, 559–561 (1986).

    ADS  CAS  Article  Google Scholar 

  33. 33

    Falkowski, P. G. et al. Cont. Shelf. Res. 8, 457–484 (1988).

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Falkowski, P., Wilson, C. Phytoplankton productivity in the North Pacific ocean since 1900 and implications for absorption of anthropogenic CO2. Nature 358, 741–743 (1992). https://doi.org/10.1038/358741a0

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing