Abstract
NITRIC oxide is an important bioregulatory molecule, being responsible, for example, for activity of endothelium-derived relaxing factor (EDRF)1–4. Acute hypertension5, diabetes6, ischaemia7and atherosclerosis8 are associated with abnormalities of EDRF. Nitric oxide is thought to be a retrograde messenger in the central nervous system9. The technology is not yet available for rapid detection of NO released by a single cell in the presence of oxygen and/or nitrite, so the release, distribution and reactivity of endogenous NO in biological systems cannot be analysed. Here we describe a porphyrinic microsensor that we have developed and applied to monitoring NO release in a microsystem. We selectively measured in situ the NO released from a single cell with a response time of less than 10 ms. The microsensor consists of p-type semiconducting polymeric porphyrin and a cationic exchanger (Nation) deposited on a thermally sharpened carbon fibre with a tip diameter of ∼0.5 (μm. The microsensor, which can be operated in either the amperometric or voltammetric mode, is characterized by a linear response up to 300 μM and a detection limit of 10 nM. Nitric oxide at the level of 10−20 mols can be detected in a single cell.
Your institute does not have access to this article
Relevant articles
Open Access articles citing this article.
-
Picoliter droplet array based on bioinspired microholes for in situ single-cell analysis
Microsystems & Nanoengineering Open Access 18 May 2020
-
Reduced Basal Nitric Oxide Production Induces Precancerous Mammary Lesions via ERBB2 and TGFβ
Scientific Reports Open Access 30 April 2019
Access options
Subscribe to Journal
Get full journal access for 1 year
$199.00
only $3.90 per issue
All prices are NET prices.
VAT will be added later in the checkout.
Tax calculation will be finalised during checkout.
Buy article
Get time limited or full article access on ReadCube.
$32.00
All prices are NET prices.
References
Furchgott, R. F. & Zawadzki, J. V. Nature 288, 373–376 (1980).
Palmer, R. M. J., Ferrige, A. G. & Moncada, S. Nature 327, 524–526 (1987).
Furchgott, R. F. in Mechanism of Vasodilation Vol. 4 (ed. Vanhoutte, P. M.) 401–414 (Raven, New York, 1988).
Ignaro, L. J., Buga, G. M., Wood, K. S., Byrns, R. E. & Chaudhuri, G. Proc. natn. Acad. Sci. U.S.A. 84, 9265–9269 (1987).
Wei, E. P., Kontos, H. A., Christman, C. W., DeWitt, D. S. & Povlishock, J. T. Circ. Res. 57, 781–787 (1985).
Piper, G. M. & Gross, G. J. Am. J. Physiol. 24, 4825–4833 (1988).
Vanbethuysen, K. M., McMutry, I. F. & Horowitz, L. D. J. clin. Invest. 79, 265–274 (1987).
Freiman, P. C., Mitchall, G. C., Helstad, D. D., Armstrong, M. L. & Harrison, D. G. Circ. Res. 58, 783–789 (1986).
Schuman, E. M. & Madison, D. V. Science 254, 1503 (1991).
Bennett, J. E. & Mallnski, T. Chem. Mat. 3, 490–495 (1991).
Malinski, T., Ciszewski, A., Bennett, J., Fish, J. R. & Czuchajowski, L. J. Electrochem. Soc. 138, 2008–2015 (1991).
Kanner, J., Harel, S. & Granit, R. Arch. Biochem. Biophys. 289, 130–136 (1991).
Marletta, M. A. Trends Biochem. Sci. 14, 488–492 (1989).
Moncada, S., Palmer, M. J. & Higgs, E. A. Pharmac. Rev. 43, 109–142 (1991).
Rosenthal, A. M. & Gotlieb, A. T. in Cell Culture Techniques in Heart and Vessel Research (ed. Piper, H. M.) 117–139 (Springer, New York, 1990).
Downes, M. J., Edwards, M. W., Elsey, T. S. & Walters, C. L. Analyst 101, 742–748 (1978).
Shibuki, K. Neurosci. Res. 9, 69–76 (1990).
Gerhardt, G. A., Oke, A. F., Nagy, G., Moghaddam, B. & Adams, R. N. Brain Res. 290, 390–395 (1984).
Engstrom, R. C., Wightman, R. M. & Kristensen, E. W. Analyt. Chem. 60, 652–656 (1988).
Bailey, F., Malinski, T. & Kiechle, F. Analyt. Chem. 63, 395–398 (1991).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Malinski, T., Taha, Z. Nitric oxide release from a single cell measured in situ by a porphyrinic-based microsensor. Nature 358, 676–678 (1992). https://doi.org/10.1038/358676a0
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/358676a0
Further reading
-
Picoliter droplet array based on bioinspired microholes for in situ single-cell analysis
Microsystems & Nanoengineering (2020)
-
Reduced Basal Nitric Oxide Production Induces Precancerous Mammary Lesions via ERBB2 and TGFβ
Scientific Reports (2019)
-
Nanomaterials-based electrochemical sensors for nitric oxide
Microchimica Acta (2015)
-
Fabrication of a porphyrin-based electrochemical biosensor for detection of nitric oxide released by cancer cells
Journal of Solid State Electrochemistry (2015)
-
An amperometric sensor for nitric oxide based on a glassy carbon electrode modified with graphene, Nafion, and electrodeposited gold nanoparticles
Microchimica Acta (2015)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.