Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Nitric oxide release from a single cell measured in situ by a porphyrinic-based microsensor


NITRIC oxide is an important bioregulatory molecule, being responsible, for example, for activity of endothelium-derived relaxing factor (EDRF)1–4. Acute hypertension5, diabetes6, ischaemia7and atherosclerosis8 are associated with abnormalities of EDRF. Nitric oxide is thought to be a retrograde messenger in the central nervous system9. The technology is not yet available for rapid detection of NO released by a single cell in the presence of oxygen and/or nitrite, so the release, distribution and reactivity of endogenous NO in biological systems cannot be analysed. Here we describe a porphyrinic microsensor that we have developed and applied to monitoring NO release in a microsystem. We selectively measured in situ the NO released from a single cell with a response time of less than 10 ms. The microsensor consists of p-type semiconducting polymeric porphyrin and a cationic exchanger (Nation) deposited on a thermally sharpened carbon fibre with a tip diameter of 0.5 (μm. The microsensor, which can be operated in either the amperometric or voltammetric mode, is characterized by a linear response up to 300 μM and a detection limit of 10 nM. Nitric oxide at the level of 10−20 mols can be detected in a single cell.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. Furchgott, R. F. & Zawadzki, J. V. Nature 288, 373–376 (1980).

    ADS  CAS  Article  Google Scholar 

  2. Palmer, R. M. J., Ferrige, A. G. & Moncada, S. Nature 327, 524–526 (1987).

    ADS  CAS  Article  Google Scholar 

  3. Furchgott, R. F. in Mechanism of Vasodilation Vol. 4 (ed. Vanhoutte, P. M.) 401–414 (Raven, New York, 1988).

    Google Scholar 

  4. Ignaro, L. J., Buga, G. M., Wood, K. S., Byrns, R. E. & Chaudhuri, G. Proc. natn. Acad. Sci. U.S.A. 84, 9265–9269 (1987).

    ADS  Article  Google Scholar 

  5. Wei, E. P., Kontos, H. A., Christman, C. W., DeWitt, D. S. & Povlishock, J. T. Circ. Res. 57, 781–787 (1985).

    CAS  Article  Google Scholar 

  6. Piper, G. M. & Gross, G. J. Am. J. Physiol. 24, 4825–4833 (1988).

    Google Scholar 

  7. Vanbethuysen, K. M., McMutry, I. F. & Horowitz, L. D. J. clin. Invest. 79, 265–274 (1987).

    Article  Google Scholar 

  8. Freiman, P. C., Mitchall, G. C., Helstad, D. D., Armstrong, M. L. & Harrison, D. G. Circ. Res. 58, 783–789 (1986).

    CAS  Article  Google Scholar 

  9. Schuman, E. M. & Madison, D. V. Science 254, 1503 (1991).

    ADS  CAS  Article  Google Scholar 

  10. Bennett, J. E. & Mallnski, T. Chem. Mat. 3, 490–495 (1991).

    CAS  Article  Google Scholar 

  11. Malinski, T., Ciszewski, A., Bennett, J., Fish, J. R. & Czuchajowski, L. J. Electrochem. Soc. 138, 2008–2015 (1991).

    CAS  Article  Google Scholar 

  12. Kanner, J., Harel, S. & Granit, R. Arch. Biochem. Biophys. 289, 130–136 (1991).

    CAS  Article  Google Scholar 

  13. Marletta, M. A. Trends Biochem. Sci. 14, 488–492 (1989).

    CAS  Article  Google Scholar 

  14. Moncada, S., Palmer, M. J. & Higgs, E. A. Pharmac. Rev. 43, 109–142 (1991).

    CAS  Google Scholar 

  15. Rosenthal, A. M. & Gotlieb, A. T. in Cell Culture Techniques in Heart and Vessel Research (ed. Piper, H. M.) 117–139 (Springer, New York, 1990).

    Book  Google Scholar 

  16. Downes, M. J., Edwards, M. W., Elsey, T. S. & Walters, C. L. Analyst 101, 742–748 (1978).

    ADS  Article  Google Scholar 

  17. Shibuki, K. Neurosci. Res. 9, 69–76 (1990).

    CAS  Article  Google Scholar 

  18. Gerhardt, G. A., Oke, A. F., Nagy, G., Moghaddam, B. & Adams, R. N. Brain Res. 290, 390–395 (1984).

    CAS  Article  Google Scholar 

  19. Engstrom, R. C., Wightman, R. M. & Kristensen, E. W. Analyt. Chem. 60, 652–656 (1988).

    CAS  Article  Google Scholar 

  20. Bailey, F., Malinski, T. & Kiechle, F. Analyt. Chem. 63, 395–398 (1991).

    CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Rights and permissions

Reprints and Permissions

About this article

Cite this article

Malinski, T., Taha, Z. Nitric oxide release from a single cell measured in situ by a porphyrinic-based microsensor. Nature 358, 676–678 (1992).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing