Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Enhanced ventilation of the North Atlantic subtropical gyre thermocline during the last glaciation

Abstract

THE ocean's intermediate1–6 and deep7,8 circulation are both known to have differed during the last glaciation from those of today, but little is known about the history of the subtropical gyres. Variations in gyre processes should be closely linked to variations in global climate, as gyre circulation is driven by air–sea interactions and reflects the climate at the ocean surface. The gyres are also a significant reservoir of carbon and nutrients, so that gyre processes affect the distribution of carbon and nutrients in the oceans and thus atmospheric CO2. Here we use measurements of δ13C and δ18O in foraminifera from the Bahamas to produce a detailed reconstruction of nutrient and temperature profiles in the thermocline during the last glaciation. The thermocline of the glacial North Atlantic subtropical gyre lacked the oxygen minimum that is characteristic of the modern ocean, and was depleted in nutrients, indicating greater, more uniform thermocline ventilation at that time. Thus not only intermediate waters1–5 but the entire upper water column within the glacial North Atlantic was depleted of nutrients. Moreover, glacial thermocline waters were cooler, had a steeper temperature gradient and a shallower base. Both the ventilation and the thermal structure of the glacial thermocline are consistent with what is known of the glacial climate9–14.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Boyle, E. A. & Keigwin, L. EOS 67, 868–869 (1986).

    Google Scholar 

  2. Cofer-Shabica, N. B. & Peterson, L. C. Geol. Soc. Am. Abstr. Progm 18, 567 (1986).

    Google Scholar 

  3. Boyle, E. A. & Keigwin, L. Nature 330, 35–40 (1987).

    Article  ADS  CAS  Google Scholar 

  4. Oppo, D. W. & Fairbanks, R. Earth planet. Sci. Lett. 86, 1–15 (1987).

    Article  ADS  CAS  Google Scholar 

  5. Zahn, R., Sarnthein, M. & Erlenkeuser, H. Paleoceanography 2, 543–559 (1987).

    Article  ADS  Google Scholar 

  6. Kallel, N., Labeyrie, L. & Duplessy, J.-C. Nature 333, 651–655 (1988).

    Article  ADS  Google Scholar 

  7. Curry, W. B., Duplessy, J. C., Labeyrie, L. D. & Shackleton, N. J. Paleoceanography 3, 317–341 (1988).

    Article  ADS  Google Scholar 

  8. Duplessy, J.-C. et al. Paleoceanography 3, 343–360 (1988).

    Article  ADS  Google Scholar 

  9. CLIMAP Project Members Geol. Soc. Am. Map Chart Ser. 36 (1981).

  10. CLIMAP Project Members Science 191, 1131–1137 (1976).

  11. Manabe, S. & Broccoli, A. J. J. geophys. Res. 90, 2167–2190 (1985).

    Article  ADS  Google Scholar 

  12. Gates, W. L. Science 191, 1138–1144 (1972).

    Article  ADS  Google Scholar 

  13. Kutzbach, J. E. & Guetter, P. J. J. atmos. Sci. 43, 1726–1759 (1986).

    Article  ADS  Google Scholar 

  14. Keffer, R., Martinson, D. G. & Corliss, B. H. Science 241, 440–442 (1988).

    Article  ADS  CAS  Google Scholar 

  15. Pedlosky, J. Science 248, 316–322 (1990).

    Article  ADS  CAS  Google Scholar 

  16. Huang, R. X. B. Rev. Geophys. Suppl. 590–609 (1991).

  17. Spencer, D. W. Earth planet Sci. Lett. 16, 91–102 (1972).

    Article  ADS  CAS  Google Scholar 

  18. Kroopnick, P., Weiss, R. F. & Craig, H. Earth planet. Sci. Lett. 16, 103–110 (1972).

    Article  ADS  CAS  Google Scholar 

  19. Wust, G. Schichtung und Zirkulation des Atlantischen Ozeans, Wiss. Ergebn. Deutsch. Atlant. Exped Forsch. Schiff “Meteor” 1925–27 6 (1936); (Engl. transl.) The Stratosphere of the Atlantic Ocean (ed. Emery, W.) (Amerind, New Delhi, 1978).

    Google Scholar 

  20. GEOSECS Atlantic Expedition Vol 2 (US Government Printing Office, Washington DC, 1981).

  21. Luyten, J., Pedlosky, J. & Stommel, H. J. phys. Oceanogr. 13, 292–309 (1983).

    Article  ADS  Google Scholar 

  22. Broecker, W. S. & Ostlund, H. G. J. geophys. Res. 84, 1145–1154 (1979).

    Article  ADS  CAS  Google Scholar 

  23. Jenkins, W. J. J. mar. Res. 38, 533–569 (1980).

    CAS  Google Scholar 

  24. Sarmiento, J. L., Rooth, C. G. & Roether, W. J. geophys. Res. 87, 8047–8056 (1982).

    Article  ADS  CAS  Google Scholar 

  25. Jenkins, W. J. J. phys. Oceanogr. 17, 763–783 (1987).

    Article  ADS  Google Scholar 

  26. Jenkins, W. J. Phil. Trans. R. Soc. A325, 43–61 (1988).

    Article  ADS  CAS  Google Scholar 

  27. McCartney, M. J. mar. Res. 40 (Suppl.) 427–464 (1982).

    Google Scholar 

  28. Kawase, M. & Sarmiento, J. L. J. geophys. Res. 90, 8961–8979 (1985).

    Article  ADS  CAS  Google Scholar 

  29. Menzel, S. W. & Ryther, J. H. Deep Sea Res. 15, 327–338 (1968).

    Google Scholar 

  30. Smith, C. L. J. mar. Res. 3, 147–170 (1940).

    CAS  Google Scholar 

  31. Wennekens, M. P. Bull. mar. Sci. 9, 1–52 (1959).

    Google Scholar 

  32. Slowey, N. C. thesis, Woods Hole Oceanogr. Inst. WHOI-90-49 (1990).

  33. Droxler, A. W., Schlager, W. & Whallon, C. C. Geology 11, 235–239 (1983).

    Article  ADS  CAS  Google Scholar 

  34. Emiliani, C. J. Geol. 63, 538–578 (1955).

    Article  ADS  CAS  Google Scholar 

  35. Fairbanks, R. G. Nature 342, 637–642 (1989).

    Article  ADS  Google Scholar 

  36. Broecker, W. S. & Peng, T.-H. Tracers in the Sea (Eldigio, New York, 1982).

    Google Scholar 

  37. Slowey, N. C. & Curry, W. B. Nature 328, 54–58 (1987).

    Article  ADS  Google Scholar 

  38. Mueller, P. J., Erlenkeuser, H. & von Grafenstein, R. in Coastal Upwelling: Its Sediment Record part B (eds Thiede, J. & Suess, E.) 365–398 (Plenum, New York, 1981).

    Google Scholar 

  39. McCartney, M. S. & Talley, L. D. J. phys. Oceanogr. 12, 1169–1188 (1982).

    Article  ADS  Google Scholar 

  40. Sarmiento, J. L. J. phys. Oceanogr. 13, 1924–1939 (1983).

    Article  ADS  Google Scholar 

  41. Woods, J. D. in Coupled-Ocean Atmosphere Models (ed. Nihoul, J. C. J.) 543–590 (Elsevier, Amsterdam, 1985).

    Book  Google Scholar 

  42. Luyten, J. & Stommel, H. J. phys. Oceanogr. 16, 1551–1560 (1986).

    Article  ADS  Google Scholar 

  43. Boyle, E. A. J. geophys. Res. 93, 15701–15714 (1988).

    Article  ADS  Google Scholar 

  44. Roemmich, D. & Wunsch, C. Deep Sea Res. 32, 619–664 (1985).

    Article  ADS  Google Scholar 

  45. Fairbanks, R. G. J. geophys. Res. 87, 5796–5808 (1982).

    Article  ADS  CAS  Google Scholar 

  46. Erez, J. & Luz, B. Geochim. cosmochim. Acta 47, 1025–1031 (1983).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Slowey, N., Curry, W. Enhanced ventilation of the North Atlantic subtropical gyre thermocline during the last glaciation. Nature 358, 665–668 (1992). https://doi.org/10.1038/358665a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/358665a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing