Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A single point mutation is the cause of the Greek form of hereditary persistence of fetal haemoglobin

Abstract

IN normal humans the fetal stage-specific γ-globin genes are silenced after birth and not expressed in the adult. Exceptions are seen in cases of hereditary persistence of fetal haemoglobin (HPFH). These are clinically important because the elevated levels of γ-globin can alleviate β-thalassaemia and sickle cell anaemia. One class of mutations is associated with point mutations in the promoter of the γ-globin genes (non-deletion HPFH), whereas others seem to be caused by large deletions 3′ to the γ-globin genes1. To test whether the point mutation found in the Greek non-deletion HPFH2,3 (guanine to adenine at nucleotide position –117) is the cause of the raised γ-globin levels in the adult stage and is not just a linked polymorphism, we engineered this mutation into a γ-globin gene. When this gene was introduced into mice, the presence of the –117 mutation results in persistence of γ-globin expression at a high level and a concomitant decrease in β-globin expression in fetal and adult mice. We show that these changes correlate with the loss of binding of the transcription factor GATA1 to the γ-globin promoter, suggesting that it may act as a negative regulator of the γ-globin gene in adults.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Poncz, M., Henthorn, P., Stoeckert, C. & Surrey, S. in Oxford Surveys on Eukaryotic Genes. Vol. V (ed. McLean, N.) 163–203 (Oxford University Press, 1989).

    Google Scholar 

  2. Collins, F. et al. Nature 313, 325–326 (1985).

    Article  ADS  CAS  Google Scholar 

  3. Gelinas, R., Endlich, B., Pfeiffer, C., Yagi, M. & Stamatoyannopoulos, G. Nature 313, 323–325 (1985).

    Article  ADS  CAS  Google Scholar 

  4. Dillon, N. & Grosveld, F. Nature 350, 252–254 (1991).

    Article  ADS  CAS  Google Scholar 

  5. Grosveld, F., Blom van Assendelft, G., Greaves, D. & Kollias, G. Cell 51, 975–985 (1987).

    Article  CAS  Google Scholar 

  6. Saiki, R. et al. Science 239, 487–491 (1988).

    Article  ADS  CAS  Google Scholar 

  7. Feingold, E. & Forget, B. Blood 74, 2178–2186 (1989).

    CAS  PubMed  Google Scholar 

  8. Anagnou, N. et al. J. clin. Res. 38, 301A (1990).

    Google Scholar 

  9. Enver, T. et al. Nature 344, 309–313 (1990).

    Article  ADS  CAS  Google Scholar 

  10. Behringer, R. R., Ryan, T. M., Palmiter, R. D., Brinster, R. L. & Townes, T. M. Genes Dev. 4, 380–389 (1990).

    Article  CAS  Google Scholar 

  11. Hanscombe, O. et al. Genes Dev. 5, 1387–1394 (1991).

    Article  CAS  Google Scholar 

  12. Weatherall, D. J. & Clegg, J. B. The Thalassaemia Syndromes (Blackwell Scientific, Boston, 1981).

    Google Scholar 

  13. Giglioni, B. et al. EMBO J. 11, 2641–2645 (1984).

    Article  Google Scholar 

  14. Morley, B. et al. Molec. cell. Biol. 12, 2057–2066 (1992).

    Article  CAS  Google Scholar 

  15. Gilman, J. et al. Nucleic Acids Res. 18, 10635–10642 (1988).

    Article  Google Scholar 

  16. Superti-Furga, G., Berberis, A., Schaffner, G. & Busslinger, M. EMBO J. 7, 3099–3108 (1988).

    Article  CAS  Google Scholar 

  17. Mantovani, R., Superti-Fuga, G., Gilman, J. & Ottolenghi, S. Nucleic Acids Res. 17, 6681–6691 (1989).

    Article  CAS  Google Scholar 

  18. Chodosh, C., Baldwin, A., Canthew, R. & Sharp, P., Cell 53, 11–24 (1988).

    Article  CAS  Google Scholar 

  19. Whitelaw, E., Tsai, S., Hogben, P. & Orkin, S. Molec. cell. Biol. 10, 6596–6606 (1990).

    Article  CAS  Google Scholar 

  20. Martin, D. & Orkin, S. Genes Dev. 4, 1886–1898 (1990).

    Article  CAS  Google Scholar 

  21. Evans, T. & Felsenfeld, G. Molec. cell. Biol. 11, 843–853 (1991).

    Article  CAS  Google Scholar 

  22. Stamatoyannopoulos, G. & Nienhuis, A. (eds) The Regulation of Hemoglobin Switching, Ch. 6 (Johns Hopkins University Press, Baltimore, 1991).

  23. Wall, I., deBoer, E. & Grosveld, F. Genes Dev. 2, 1089–1100 (1988).

    Article  CAS  Google Scholar 

  24. Dignam, J., Lebowitz, R. & Roeder, R. Nucleic Acids Res. 113, 1475–1489 (1983).

    Article  Google Scholar 

  25. Philipsen, S., Talbot, D., Fraser, P. & Grosveld, F. EMBO J. 9, 2159–2167 (1990).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berry, M., Grosveld, F. & Dillon, N. A single point mutation is the cause of the Greek form of hereditary persistence of fetal haemoglobin. Nature 358, 499–502 (1992). https://doi.org/10.1038/358499a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/358499a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing