Letter | Published:

Changes in surface salinity of the North Atlantic Ocean during the last deglaciation

Abstract

ABRUPT and short climate changes, such as the Younger Dryas, punctuated the last glacial-to-interglacial transition1–4. Broecker et al.5 proposed that these may have been caused by an interruption of thermohaline circulation as inputs of glacial meltwater freshened the surface waters of the North Atlantic. The finding6that meltwater discharge was minimal during the Younger Dryas, however, led to the suggestion that the surface-water salinity drop might have been caused instead by changes in the freshwater budget (the difference between precipitation and evaporation), accompanied by a reduction in poleward advection of saline subtropical water. Here we use micropalaeontological and stable-isotope records from foraminifera in two cores from the North Atlantic to generate two continuous, high-resolution records of sea surface temperature and salinity changes over the past 18,000 years. Despite the injection of glacial meltwater during warm episodes, we find that sea surface salinity and temperature remain positively correlated during deglaciation. Cold, low-salinity events occurred during the early stages of deglaciation (14,500–13,000 years ago) and the Younger Dryas, but the minor injections of meltwater at high latitudes during these events are insufficient to account for the observed salinity changes. We conclude that an additional feedback from changes in the hydrological cycle and in advection was necessary to trigger changes in thermohaline circulation and thus in climate. This feedback did not act when the meltwater injection occurred at low latitude.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Ruddiman, W. F. & Mclntyre, A. Palaeogeogr. Palaeoclim. Palaeoecol. 35, 145–214 (1981).

  2. 2

    Duplessy, J. C., Delibrias, G., Turon, J. L., Pujol, C. & Duprat, J. Palaeogeogr. Palaeoclim. Palaeoecol. 35, 121–144 (1981).

  3. 3

    Oeschger, H. et al. in Climate Processes and Climate Sensitivity, 299–306 (AGU, Washington DC, 1984).

  4. 4

    Broecker, W. S., Peteet, D. M. & Rind, D. Nature 315, 21–26 (1985).

  5. 5

    Broecker, W. S. et al. Paleoceanography 3, 1–19 (1988).

  6. 6

    Fairbanks, R. G. Nature 342, 637–642 (1989).

  7. 7

    Bard, E. et al. Nature 328, 791–794 (1987).

  8. 8

    Bard, E. et al. Nucl. Instrum. Methods nucl. Phys. B52, 461–468 (1990).

  9. 9

    Broecker, W. S. in Natn. Acad. Sci. natn. Res. Council Publ. 1075, 138–149 (1963).

  10. 10

    Bard, E. Paleoceanography 3, 635–645 (1988).

  11. 11

    Imbrie, J. & Kipp, N. G. in The Late Cenozoic Glacial Ages (ed. Turekian, K. K.) 71–181 (Yale Univ. Press, 1971).

  12. 12

    Pujol, C. thesis, Univ. of Bordeaux 1 (1980).

  13. 13

    Duplessy, J. C. et al. Oceanol. Acta 14, 311–324 (1991).

  14. 14

    Epstein, S., Buchsbaum, R., Lowenstam, H. A. & Urey, H. C. Geol. Soc. Am. Bull. 64, 1315–1325 (1953).

  15. 15

    Shackleton, N. J. in Coll. CNRS No. 219, 203–210, CNRS, Paris (1974).

  16. 16

    Stacker, T. F. & Wright, D. G. J. phys. Oceanogr. 21, 1725–1739 (1991).

  17. 17

    Birchfield, G. E., Wang, H. & Wyant, M. Paleoceanography 5, 383–395 (1990).

  18. 18

    Wang, H. & Birchfield, G. E. J. geophys. Res. 97, 2335–2346 (1992).

  19. 19

    Bard, E., Arnold, M. & Duplessy, J. C. Quat. Proc. 1, 67–73 (1991).

  20. 20

    Duplessy, J. C. et al. Earth planet. Sci. Lett. 103, 27–40 (1991).

  21. 21

    Mix, A. C. & Ruddiman, W. F. Quat. Res. 21, 1–20 (1984).

  22. 22

    Duplessy, J. C. et al. Paleoceanography (in the press).

  23. 23

    Shackleton, N. J. Quat. Sci. Rev. 6, 183–190 (1987).

  24. 24

    Labeyrie, L. D., Duplessy, J. C. & Blanc, P. L. Nature 327, 477–482 (1987).

  25. 25

    Craig, H. & Gordon, L. I. in Stable Isotopes in Oceanographic Studies and Paleotemperatures (ed. Tongiorgi, E.) 9–130 (CNR, Pisa, 1965).

  26. 26

    CLIMAP Project Members Geol. Soc. Am. Map Chart Series, MC-36 (1981).

  27. 27

    Jones, G. A. & Keigwin, L. D. Nature 336, 56–59 (1988).

  28. 28

    Lehman, S. J. et al. Nature 349, 513–516 (1971).

  29. 29

    Berglund, B. E. Geol. För. Stockh. Förh. 93, 11–45 (1971).

  30. 30

    Broecker, W. S. & Denton, G. Geochim. cosmochim. Acta 53, 2465–2501 (1990).

  31. 31

    Gordon, A. L. J. geophys. Res. 91, 5037–5047 (1986).

  32. 32

    Maier-Reimer, E. & Mikolajewicz, U. in Oceanography (eds Ayala-Castanares, A., Wooster, W. & Yanez-Arancibia, A.) 87–100 (UNAM, Mexico, 1989).

  33. 33

    Cox, R. A., McCartney, M. J. & Culkin, F. Deep-Sea Res. 17, 679–689 (1970).

  34. 34

    Labeyrie, L. et al. Quat. Sci. Rev. (1992).

  35. 35

    Broecker, W. S. et al. Paleoceanography 5, 469–477 (1990).

  36. 36

    Van Weering, T. C. E. & de Rijk, S. Mar. Geol. 101, 49–69 (1992).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.