Letter | Published:

Predicted response of stream chemistry to acid loading tested in Canadian catchments

Abstract

SHORT-TERM acidification of lakes and streams can cause bio-logical damage by lowering pH and increasing concentrations of inorganic aluminium1–4. Storms laden with acids and sea salts, rapid melting of acidic snow and remobilization of acids stored in catchment soils can cause episodes of acidification lasting from hours to months. These episodes can help to reveal the mechanisms that regulate catchment runoff chemistry5–7. Here we use extreme, climatically triggered acidification episodes in 18 intensively monitored streams in Canada to test a geochemical theory8 that predicts the chemical response of catchments to changes in acid loading. At all 18 catchments, changes in base cation (Ca2+, Mg2+, Na+, K+, NH+4) concentrations offset about 75–95% of the observed changes in acid anion (SO2−, NO3, Cl, OA) levels; increases in hydrogen and aluminium ions and decreases in bicarbonate accounted for the remaining 5–25%. In response to equal acid anion increases, however, some catchments released over 35 times more H+ or 50 times more inorganic aluminium than others. The observed chemical responses to shifts in acid anion loading agreed with a priori geochemical predictions derived8 from the chemical composition of runoff, indicating that catchment vulnerability to acidification can be assessed, in advance, directly from surveys of lake and stream chemistry.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Leivestad, H. & Muniz, I. P. Nature 259, 391–392 (1976).

  2. 2

    Harvey, H. H. & Whelpdale, D. M. Water Air Soil Pollut. 30, 579–586 (1986).

  3. 3

    Harriman, R., Gillespie, E. & Morrison, B. R. S. in The Surface Waters Acidification Programme (ed. Mason, B. J.) 343–355 (Cambridge Univ. Press, Cambridge, 1990).

  4. 4

    Morris, R. & Reader, J. P. in The Surface Waters Acidification Programme (ed. Mason, B. J.) 357–368 (Cambridge Univ. Press, Cambridge, 1990).

  5. 5

    Wright, R. F., Norton, S. A., Brakke, D. F. & Frogner, T. Nature 334, 422–424 (1988).

  6. 6

    Mulder, J. et al. Water Resour. Res. 26, 611–622 (1990).

  7. 7

    Seip, H. M., Andersen, D. O., Christophersen, N., Sullivan, T. J. & Vogt, R. D. J. Hydrol. 108, 387–405 (1989).

  8. 8

    Kirchner, J. W. Geochim. cosmochim. Acta 56, 2311–2327 (1992).

  9. 9

    Reuss, J. O. & Johnson, D. W. Acid Deposition and the Acidification of Soils and Waters (Springer, New York, 1986).

  10. 10

    Christophersen, N., Seip, H. M. & Wright, R. F. Water Resour. Res. 18, 977–996 (1982).

  11. 11

    Cosby, B. J., Hornberger, G. M., Galloway, J. N. & Wright, R. F. Water Resour. Res. 21, 51–63 (1985).

  12. 12

    Gherini, S. et al. Water Air Soil Pollut. 26, 95–113 (1985).

  13. 13

    Galloway, J. N. et al. Electric Power Res. Inst Rep. EA-3221 (Palo Alto, California, 1984).

  14. 14

    LaZerte, B. D. & Dillon, P. J. Can. J. Fish. aquat. Sci. 41, 1664–1677 (1984).

  15. 15

    Dillon, P. J., Reid, R. A. & de Grosbois, E. Nature 329, 45–48 (1987).

  16. 16

    Dillon, P. J., Lusis, M., Reid, R. & Yap, D. Atmos. Environ. 22, 901–905 (1988).

  17. 17

    Dillon, P. J. & LaZerte, B. D. Envir. Pollut. (in the press).

  18. 18

    Christophersen, N. et al. J. Hydrol. 116, 63–76 (1990).

  19. 19

    Driscoll, C. T., Likens, G. E., Hedin, L. O., Eaton, J. S. & Bormann, F. H. Envir. Sci. Technol. 23, 137–143 (1989).

  20. 20

    Wright, R. F., Lotse, E. & Semb, A. Nature 334, 670–675 (1988).

  21. 21

    Handbook of Analytical Methods for Environmental Samples (Laboratory Services and Applied Research Branch, Ontario Ministry of the Environment, 1983).

  22. 22

    Locke, B. A. & Scott, L. D. Data Rep. DR86/4 (Ontario Ministry of the Environment, Dorset Research Center, 1986).

  23. 23

    Janhurst, S. (ed.) 1989 Performance Rep. (Water Quality Section, Laboratory Services Branch, Ontario Ministry of Environment, 1991).

  24. 24

    LaZerte, B. D., Chun, C., Evans, D. & Tomassini, F. Envir. Sci. Technol. 22, 1106–1108 (1988).

  25. 25

    Schecher, W. D. & Driscoll, C. T. Water Resour. Res. 23, 525–534 (1987).

  26. 26

    Oliver, B. G., Thurman, E. M. & Malcolm, R. L. Geochim. cosmochim. Acta 47, 2031–2035 (1983).

  27. 27

    Stumm, W. & Morgan, J. J. Aquatic Chemistry (Wiley, New York, 1981).

  28. 28

    Wigington, P. J. Jr, Davies, T. D., Tranter, M. & Eshleman, K. N. Episodic Acidification of Surface Waters due to Acidic Deposition, State of Science and Technology Rep. 12 (National Acid Precipitation Assessment Program, Washington DC, 1990).

  29. 29

    Molot, L. A., Dillon, P. J. & LaZerte, B. D. Can. J. Fish aquat. Sci. 46, 1658–1666 (1989).

  30. 30

    Christophersen, N., Rustad, S. & Seip, H. M. Phil. Trans. R. Soc. B305, 427–439 (1984).

  31. 31

    Christophersen, N., Johannessen, M. & Skaane, R. in Reversibility of Acidification (ed. Barth, H.) 142–148 (Elsevier, London, 1987).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.