Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Predicted response of stream chemistry to acid loading tested in Canadian catchments

Abstract

SHORT-TERM acidification of lakes and streams can cause bio-logical damage by lowering pH and increasing concentrations of inorganic aluminium1–4. Storms laden with acids and sea salts, rapid melting of acidic snow and remobilization of acids stored in catchment soils can cause episodes of acidification lasting from hours to months. These episodes can help to reveal the mechanisms that regulate catchment runoff chemistry5–7. Here we use extreme, climatically triggered acidification episodes in 18 intensively monitored streams in Canada to test a geochemical theory8 that predicts the chemical response of catchments to changes in acid loading. At all 18 catchments, changes in base cation (Ca2+, Mg2+, Na+, K+, NH+4) concentrations offset about 75–95% of the observed changes in acid anion (SO2−, NO3, Cl, OA) levels; increases in hydrogen and aluminium ions and decreases in bicarbonate accounted for the remaining 5–25%. In response to equal acid anion increases, however, some catchments released over 35 times more H+ or 50 times more inorganic aluminium than others. The observed chemical responses to shifts in acid anion loading agreed with a priori geochemical predictions derived8 from the chemical composition of runoff, indicating that catchment vulnerability to acidification can be assessed, in advance, directly from surveys of lake and stream chemistry.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Leivestad, H. & Muniz, I. P. Nature 259, 391–392 (1976).

    Article  ADS  CAS  Google Scholar 

  2. Harvey, H. H. & Whelpdale, D. M. Water Air Soil Pollut. 30, 579–586 (1986).

    Article  ADS  CAS  Google Scholar 

  3. Harriman, R., Gillespie, E. & Morrison, B. R. S. in The Surface Waters Acidification Programme (ed. Mason, B. J.) 343–355 (Cambridge Univ. Press, Cambridge, 1990).

    Google Scholar 

  4. Morris, R. & Reader, J. P. in The Surface Waters Acidification Programme (ed. Mason, B. J.) 357–368 (Cambridge Univ. Press, Cambridge, 1990).

    Google Scholar 

  5. Wright, R. F., Norton, S. A., Brakke, D. F. & Frogner, T. Nature 334, 422–424 (1988).

    Article  ADS  CAS  Google Scholar 

  6. Mulder, J. et al. Water Resour. Res. 26, 611–622 (1990).

    ADS  CAS  Google Scholar 

  7. Seip, H. M., Andersen, D. O., Christophersen, N., Sullivan, T. J. & Vogt, R. D. J. Hydrol. 108, 387–405 (1989).

    Article  ADS  CAS  Google Scholar 

  8. Kirchner, J. W. Geochim. cosmochim. Acta 56, 2311–2327 (1992).

    Article  ADS  CAS  Google Scholar 

  9. Reuss, J. O. & Johnson, D. W. Acid Deposition and the Acidification of Soils and Waters (Springer, New York, 1986).

    Book  Google Scholar 

  10. Christophersen, N., Seip, H. M. & Wright, R. F. Water Resour. Res. 18, 977–996 (1982).

    Article  ADS  CAS  Google Scholar 

  11. Cosby, B. J., Hornberger, G. M., Galloway, J. N. & Wright, R. F. Water Resour. Res. 21, 51–63 (1985).

    Article  ADS  CAS  Google Scholar 

  12. Gherini, S. et al. Water Air Soil Pollut. 26, 95–113 (1985).

    Article  Google Scholar 

  13. Galloway, J. N. et al. Electric Power Res. Inst Rep. EA-3221 (Palo Alto, California, 1984).

  14. LaZerte, B. D. & Dillon, P. J. Can. J. Fish. aquat. Sci. 41, 1664–1677 (1984).

    Article  CAS  Google Scholar 

  15. Dillon, P. J., Reid, R. A. & de Grosbois, E. Nature 329, 45–48 (1987).

    Article  ADS  CAS  Google Scholar 

  16. Dillon, P. J., Lusis, M., Reid, R. & Yap, D. Atmos. Environ. 22, 901–905 (1988).

    Article  ADS  CAS  Google Scholar 

  17. Dillon, P. J. & LaZerte, B. D. Envir. Pollut. (in the press).

  18. Christophersen, N. et al. J. Hydrol. 116, 63–76 (1990).

    Article  ADS  CAS  Google Scholar 

  19. Driscoll, C. T., Likens, G. E., Hedin, L. O., Eaton, J. S. & Bormann, F. H. Envir. Sci. Technol. 23, 137–143 (1989).

    Article  ADS  CAS  Google Scholar 

  20. Wright, R. F., Lotse, E. & Semb, A. Nature 334, 670–675 (1988).

    Article  ADS  CAS  Google Scholar 

  21. Handbook of Analytical Methods for Environmental Samples (Laboratory Services and Applied Research Branch, Ontario Ministry of the Environment, 1983).

  22. Locke, B. A. & Scott, L. D. Data Rep. DR86/4 (Ontario Ministry of the Environment, Dorset Research Center, 1986).

  23. Janhurst, S. (ed.) 1989 Performance Rep. (Water Quality Section, Laboratory Services Branch, Ontario Ministry of Environment, 1991).

  24. LaZerte, B. D., Chun, C., Evans, D. & Tomassini, F. Envir. Sci. Technol. 22, 1106–1108 (1988).

    Article  ADS  CAS  Google Scholar 

  25. Schecher, W. D. & Driscoll, C. T. Water Resour. Res. 23, 525–534 (1987).

    Article  ADS  CAS  Google Scholar 

  26. Oliver, B. G., Thurman, E. M. & Malcolm, R. L. Geochim. cosmochim. Acta 47, 2031–2035 (1983).

    Article  ADS  CAS  Google Scholar 

  27. Stumm, W. & Morgan, J. J. Aquatic Chemistry (Wiley, New York, 1981).

    Google Scholar 

  28. Wigington, P. J. Jr, Davies, T. D., Tranter, M. & Eshleman, K. N. Episodic Acidification of Surface Waters due to Acidic Deposition, State of Science and Technology Rep. 12 (National Acid Precipitation Assessment Program, Washington DC, 1990).

  29. Molot, L. A., Dillon, P. J. & LaZerte, B. D. Can. J. Fish aquat. Sci. 46, 1658–1666 (1989).

    Article  CAS  Google Scholar 

  30. Christophersen, N., Rustad, S. & Seip, H. M. Phil. Trans. R. Soc. B305, 427–439 (1984).

    Article  CAS  Google Scholar 

  31. Christophersen, N., Johannessen, M. & Skaane, R. in Reversibility of Acidification (ed. Barth, H.) 142–148 (Elsevier, London, 1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kirchner, J., Dillon, P. & LaZerte, B. Predicted response of stream chemistry to acid loading tested in Canadian catchments. Nature 358, 478–482 (1992). https://doi.org/10.1038/358478a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/358478a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing