Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Physiological and behavioural thermoregulation in bigeye tuna (Thunnus obesus)

Abstract

TUNA are unique among teleost fishes in being thermoconserving. Vascular counter-current heat exchangers maintain body temperatures above ambient water temperature, thereby improving locomotor muscle efficiency, especially at burst speeds and when pursuing prey below the thermocline1–6. Because tuna also occasionally swim rapidly in warm surface waters, it has been hypothesized that tuna thermoregulate to accommodate changing activity levels or ambient temperatures7. But previous field experiments have been unable to demonstrate definitively short-latency, mammalian-type physiological thermoregulation8,9. Here we show using telemetered data that free-ranging bigeye tuna (Thunnus obesus) can rapidly alter whole-body thermal conductivity by two orders of magnitude. The heat exchangers are disengaged to allow rapid warming as the tuna ascend from cold water into warmer surface waters, and are reactivated to conserve heat when they return into the depths. Combining physiological and behavioural thermoregulation expands the foraging space of bigeye tuna into otherwise prohibitively cold, deep water.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Graham, J. B. & Diener, D. R. in The Physiological Ecology of Tunas (eds Sharp, G. D. & Dizon. A. E.) 113–134 (Academic, New York, 1978).

    Book  Google Scholar 

  2. Carey, F. G. Sci. Am. 228, 36–44 (1973).

    Article  CAS  Google Scholar 

  3. Graham, J. B. in Fish Biomechanics (eds Webb, P. W. & Weihs, D.) 248–279 (Praeger, New York, 1983).

    Google Scholar 

  4. Neill, W, H., Chang, R. K. C. & Dizon, A. E. Environ. Biol. Fish. 1, 61–80 (1976).

    Article  Google Scholar 

  5. Graham, J. B. Fish. Bull. 73, 219–229 (1975).

    Google Scholar 

  6. Stevens, E. D. & Neill, W. H. in Fish Physiology VII (eds Hoar, W. S. & Randall, D. J.) 315–359 (Academic, New York, 1978).

    Google Scholar 

  7. Dizon, A. E. & Brill, R. W. Am. Zool 19, 249–265 (1979).

    Article  Google Scholar 

  8. Carey, F. G., & Lawson, K. D. Comp. Biochem. Physiol. 44, 375–392 (1973).

    Article  CAS  Google Scholar 

  9. Neill, W. S. & Stevens, E. D. Science 184, 1008–1010 (1974).

    Article  ADS  CAS  Google Scholar 

  10. Graham, J. B. & Dickson, K. A. Physiol. Zool 54, 470–486 (1981).

    Article  Google Scholar 

  11. Carey, F. G. in Planning the Future of Billfishes (ed. Stroud, R. H.) 103–122 (National Coalition Marine Conservation, Savannah, Georgia, 1990).

    Google Scholar 

  12. Carey, F. G. & Scharold, J. V. Mar. Biol. 106, 329–342 (1990).

    Article  Google Scholar 

  13. Carey, F. G. & Gibson, Q. H. Physiol. Zool. 60, 138–148 (1987).

    Article  Google Scholar 

  14. Holland, K. N., Brill, R. W. & Chang, R. K. C. Fish. Bull. 88, 493–507 (1990).

    Google Scholar 

  15. AUTODIF, a C + + Array Language Extension with Automatic Differentiation for Use in Non-linear Modelling and Statistics (Otter Research Ltd, Nanaimo, Canada, 1991).

  16. Axelsson, M. & Nilsson, S. J. exp. Biol. 126, 225–233 (1986).

    CAS  PubMed  Google Scholar 

  17. Stevens, E. D., Lam, H. M. & Kendall, J. J. exp. Biol. 61, 145–153 (1974).

    CAS  PubMed  Google Scholar 

  18. Holland, K. N., Brill, R. W., Chang, R. K. C. & Yost, R. Mar. Fish. Rev. 47, 26–32 (1985).

    Google Scholar 

  19. Greiwank, A. & Corliss, G. F. (eds) Automatic Differentiation of Algorithms: Theory, Practice and Application (SIAM, Philadelphia, 1991).

  20. Dizon, A. E., Byles, T. C. & Stevens, E. D. J. therm. Biol. 1, 185–187 (1976).

    Article  Google Scholar 

  21. Steffel, S., Dizon, A. E., Magnuson, J. J. & Neill, W. H. Trans. Am. Fish. Soc. 105, 588–591 (1976).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holland, K., Brill, R., Chang, R. et al. Physiological and behavioural thermoregulation in bigeye tuna (Thunnus obesus). Nature 358, 410–412 (1992). https://doi.org/10.1038/358410a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/358410a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing