Physiological and behavioural thermoregulation in bigeye tuna (Thunnus obesus)

Abstract

TUNA are unique among teleost fishes in being thermoconserving. Vascular counter-current heat exchangers maintain body temperatures above ambient water temperature, thereby improving locomotor muscle efficiency, especially at burst speeds and when pursuing prey below the thermocline1–6. Because tuna also occasionally swim rapidly in warm surface waters, it has been hypothesized that tuna thermoregulate to accommodate changing activity levels or ambient temperatures7. But previous field experiments have been unable to demonstrate definitively short-latency, mammalian-type physiological thermoregulation8,9. Here we show using telemetered data that free-ranging bigeye tuna (Thunnus obesus) can rapidly alter whole-body thermal conductivity by two orders of magnitude. The heat exchangers are disengaged to allow rapid warming as the tuna ascend from cold water into warmer surface waters, and are reactivated to conserve heat when they return into the depths. Combining physiological and behavioural thermoregulation expands the foraging space of bigeye tuna into otherwise prohibitively cold, deep water.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Graham, J. B. & Diener, D. R. in The Physiological Ecology of Tunas (eds Sharp, G. D. & Dizon. A. E.) 113–134 (Academic, New York, 1978).

  2. 2

    Carey, F. G. Sci. Am. 228, 36–44 (1973).

  3. 3

    Graham, J. B. in Fish Biomechanics (eds Webb, P. W. & Weihs, D.) 248–279 (Praeger, New York, 1983).

  4. 4

    Neill, W, H., Chang, R. K. C. & Dizon, A. E. Environ. Biol. Fish. 1, 61–80 (1976).

  5. 5

    Graham, J. B. Fish. Bull. 73, 219–229 (1975).

  6. 6

    Stevens, E. D. & Neill, W. H. in Fish Physiology VII (eds Hoar, W. S. & Randall, D. J.) 315–359 (Academic, New York, 1978).

  7. 7

    Dizon, A. E. & Brill, R. W. Am. Zool 19, 249–265 (1979).

  8. 8

    Carey, F. G., & Lawson, K. D. Comp. Biochem. Physiol. 44, 375–392 (1973).

  9. 9

    Neill, W. S. & Stevens, E. D. Science 184, 1008–1010 (1974).

  10. 10

    Graham, J. B. & Dickson, K. A. Physiol. Zool 54, 470–486 (1981).

  11. 11

    Carey, F. G. in Planning the Future of Billfishes (ed. Stroud, R. H.) 103–122 (National Coalition Marine Conservation, Savannah, Georgia, 1990).

  12. 12

    Carey, F. G. & Scharold, J. V. Mar. Biol. 106, 329–342 (1990).

  13. 13

    Carey, F. G. & Gibson, Q. H. Physiol. Zool. 60, 138–148 (1987).

  14. 14

    Holland, K. N., Brill, R. W. & Chang, R. K. C. Fish. Bull. 88, 493–507 (1990).

  15. 15

    AUTODIF, a C + + Array Language Extension with Automatic Differentiation for Use in Non-linear Modelling and Statistics (Otter Research Ltd, Nanaimo, Canada, 1991).

  16. 16

    Axelsson, M. & Nilsson, S. J. exp. Biol. 126, 225–233 (1986).

  17. 17

    Stevens, E. D., Lam, H. M. & Kendall, J. J. exp. Biol. 61, 145–153 (1974).

  18. 18

    Holland, K. N., Brill, R. W., Chang, R. K. C. & Yost, R. Mar. Fish. Rev. 47, 26–32 (1985).

  19. 19

    Greiwank, A. & Corliss, G. F. (eds) Automatic Differentiation of Algorithms: Theory, Practice and Application (SIAM, Philadelphia, 1991).

  20. 20

    Dizon, A. E., Byles, T. C. & Stevens, E. D. J. therm. Biol. 1, 185–187 (1976).

  21. 21

    Steffel, S., Dizon, A. E., Magnuson, J. J. & Neill, W. H. Trans. Am. Fish. Soc. 105, 588–591 (1976).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Holland, K., Brill, R., Chang, R. et al. Physiological and behavioural thermoregulation in bigeye tuna (Thunnus obesus). Nature 358, 410–412 (1992). https://doi.org/10.1038/358410a0

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.