Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Composition of fluids in the lower crust inferred from metamorphic salt in lower crustal rocks

Abstract

Knowledge of the rheological properties of the lower crust and the metamorphic processes that operate there is important for our understanding of orogenic processes and granite genesis. The rheological properties critically depend on whether fluids are present in the lower crust1,2 and, if present, on their composition3,4,5,6. Fluid-inclusion7,8,9 and phase-equilibria4,10 studies of lower crustal granulites have shown that fluids with low water activities (due to the presence of dissolved components such as CH4, N2, CO, CO2 and chlorides)11 are present at least episodically in the lower crust. Here we report the occurrence of a solid salt solution (NaCl–KCl) found together with chlorine-rich amphibole and biotite in lower crustal granulites. A desiccation mechanism explains how salt and chlorine-rich minerals formed from an originally water-rich fluid through a short-lived series of hydration reactions in the granulites, during which chlorine was progressively enriched in the fluid. Consequently, it would appear that fluid was present in the lower crust in only small amounts and was not stable over geologically long periods of time, leading to the conclusion that the lower crust is devoid of a free fluid phase during most of its history.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Secondary electron image and microprobe element maps of a typical aggregate of metamorphic salt in sample GM 402.
Figure 2: Microprobe element map showing the distribution of Cl in a portion of sample GM 93.
Figure 3: Measured (top) and calculated (bottom) distribution of Cl in amphibole from sample GM 96 (a.f.u., atoms per formula unit).
Figure 4: Temperature– X H 2 O diagram, where X H 2 O is H2O/(H2O + Cl).

Similar content being viewed by others

References

  1. Frost, R. & Bucher, K. Is water responsible for geophysical anomalies in the deep continental crust? A petrological perspective. Tectonophysics 231, 293–303 (1994).

    Article  ADS  CAS  Google Scholar 

  2. Jones, A. G. in Continental Lower Crust (eds Fountain, D. M., Arculus, R. & Kay, W.) 81–143 (Developments in Geotectonics 23, Elsevier, Amsterdam, (1992)).

    Google Scholar 

  3. Frost, B. R. & Frost, C. D. CO2, melts and granulite metamorphism. Nature 327, 503–506 (1987).

    Article  ADS  CAS  Google Scholar 

  4. Valley, J. W., Peterson, E. U. & Essene, E. J. Fluorphlogopite and fluortremolite in Adirondack marbles and calculated C-O-H-F fluid compositions. Am. Mineral. 67, 545–557 (1982).

    CAS  Google Scholar 

  5. Valley, J. W., Peterson, E. U. & Essene, E. J. & Lamb, W. Metamorphism in the Adirondacks: II. The role of fluids. J. Petrol. 31, 555–596 (1990).

    Article  ADS  Google Scholar 

  6. Newton, R. C., Smith, J. V. & Windley, B. F. Carbonic metamorphism, granulites, and crustal growth. Nature 288, 45–50 (1980).

    Article  ADS  CAS  Google Scholar 

  7. Philippot, P. & Selverstone, J. Trace-element-rich brines in eclogitic veins: implications for fluid composition and transport during subduction. Contrib. Mineral. Petrol. 106, 417–430 (1991).

    Article  ADS  CAS  Google Scholar 

  8. Touret, J. L. R. in The Deep Proterozoic Crust in the North Atlantic Provinces (eds Tobi, A. C. & Touret, J. L. R.) 517–550 (Reidel, Dordrecht, Holland, (1985)).

    Book  Google Scholar 

  9. Sciuto, P. F. & Ottonello, G. Water–rock interaction on Zabargad Island, Red Sea — a case study: I. Application of the concept of local equilibrium. Geochim. Cosmochim. Acta 59, 2187–2206 (1995).

    Article  ADS  CAS  Google Scholar 

  10. Valley, J. W., McLelland, J. & Essene, E. J. Metamorphic fluids in the deep crust: evidence from the Adirondacks. Nature 301, 226–228 (1983).

    Article  ADS  CAS  Google Scholar 

  11. Wickham, S. M. in Continental Lower Crust (eds Fountain, D. M., Arculus, R. & Kay, W.) 391–421 (Developments in Geotectonics 23, Elsevier, Amsterdam, (1992)).

    Google Scholar 

  12. Griffin, W. L. et al. Archean and Proterozoic crustal evolution in Lofoten-Vesterålen, N. Norway. J. Geol. Soc. Lond. 135, 629–647 (1978).

    Article  CAS  Google Scholar 

  13. Markl, G. & Bucher, K. Proterozoic eclogites from the Lofoten Islands, N. Norway. Lithos 42, 15–35 (1997).

    Article  ADS  CAS  Google Scholar 

  14. Hames, W. E. & Andresen, A. The timing of Paleozoic orogeny and extension in the continental shelf of northcentral Norway as indicated by laser 40Ar/39Ar muscovite dating. Geology 24, 1005–1008 (1996).

    Article  ADS  CAS  Google Scholar 

  15. Trommsdorf, V., Skippen, G. & Ulmer, P. Halite and sylvite as solid inclusions in high-grade metamorphic rocks. Contrib. Mineral. Petrol. 89, 24–29 (1985).

    Article  ADS  Google Scholar 

  16. Kullerud, K. Chlorine, titanium and barium-rich biotites: factors controlling biotite composition and the implications for garnet-biotite geothermometry. Contrib. Mineral. Petrol. 120, 42–59 (1995).

    Article  ADS  CAS  Google Scholar 

  17. Volfinger, M., Robert, J. & Vielzeuf, D. Structural control of the chlorine content of OH-bearing silicates (micas and amphiboles). Geochim. Cosmochim. Acta 49, 37–48 (1985).

    Article  ADS  CAS  Google Scholar 

  18. Oberti, R., Ungaretti, L. & Cannillo, E. The mechanism of Cl incorporation in amphibole. Am. Mineral. 78, 746–752 (1993).

    CAS  Google Scholar 

  19. Kullerud, K. Chlorine-rich amphiboles: interplay between amphibole composition and an evolving fluid. Eur. J. Mineral. 8, 355–370 (1996).

    Article  ADS  Google Scholar 

  20. Munoz, J. L. & Swenson, A. Chloride-hydroxyl exchange in biotite and estimation of relative HCl/HF activities in hydrothermal fluids. Econ. Geol. 76, 2212–2221 (1981).

    Article  CAS  Google Scholar 

  21. Aranovich, L. & Newton, R. H2O activity in concentrated NaCl solutions at high pressures and temperatures measured with the brucite-periclase equilibrium. Contrib. Mineral. Petrol. 125, 200–213 (1996).

    Article  ADS  CAS  Google Scholar 

  22. Zhu, C. & Sverjensky, D. A. Partitioning of F-Cl-OH between minerals and hydrothermal fluids. Geochim. Cosmochim. Acta 55, 1837–1858 (1991).

    Article  ADS  CAS  Google Scholar 

  23. Aranovich, L. Y. & Newton, R. C. H2O activity in concentrated KCl and KCl–NaCl solutions at high temperatures and pressures measured by the brucite–periclase equilibrium. Contrib. Mineral. Petrol. 127, 261–271 (1997).

    Article  ADS  CAS  Google Scholar 

  24. Berman, R. G. Mixing properties of Ca-Mg-Fe-Mn garnets. Am. Mineral. 75, 328–344 (1990).

    CAS  Google Scholar 

  25. Fuhrmann, M. & Lindsley, D. Ternary-feldspar modeling and thermometry. Am. Mineral. 73, 201–215 (1988).

    Google Scholar 

  26. Chou, I., Sterner, S. M. & Pitzer, K. S. Phase relations in the system NaCl-KCl-H2O:IV. Differential thermal analysis of the sylvite liquidus in the KCl-H2O binary, the liquidus in the NaCl-KCl-H2O ternary, and the solidus in the NaCl-KCl binary to 2kb pressure, and a summary of experimental data for thermodynamic-PTX analysis of solid-liquid equilibria at elevated P-T conditions. Geochim. Cosmochim. Acta 56 2281–2293 (1992).

    Article  ADS  CAS  Google Scholar 

  27. Nijland, T. G., Jansen, J. B. & Maijer, C. Halogen geochemistry of fluid during amphibolite-granulite metamorphism as indicate by apatite and hydrous silicates in basic rocks from the Bamble Sector, South Norway. Lithos 30, 167–189 (1993).

    Article  ADS  CAS  Google Scholar 

  28. Henry, D. J. Cl-rich minerals in Archean granulite facies ironstones from the Beartooth Mountains, Montana, USA: Implications for fluids involved in granulite metamorphism. J. Geol. Soc. India 32, 43–45 (1988).

    Google Scholar 

  29. Frost, B. R. & Touret, J. L. R. Magmatic CO2and saline melts from the Sybille Monzosyenite, Laramie Anorthosite Complex, Wyoming. Contrib. Mineral. Petrol. 103, 178–186 (1989).

    Article  ADS  CAS  Google Scholar 

  30. Lowenstern, J. B. Chlorine, fluid immiscibility, and degassing in peralkaline magmas from Pantelleria, Italy. Am. Mineral. 79, 353–369 (1994).

    CAS  Google Scholar 

  31. Enami, M., Liou, J. G. & Bird, D. K. Cl-bearing amphibole in the Salton Sea geothermal system, California. Can. Mineral. 30, 1077–1092 (1992).

    CAS  Google Scholar 

  32. Vanko, D. A. Occurrence and origin of marialitic scapolite in the Humboldt Lopolith, N. W. Nevada. Am. Mineral. 71, 51–59 (1986).

    CAS  Google Scholar 

  33. Mora, C. I. & Valley, J. W. Halogen-rich scapolite and biotite; Implications of metamorphic fluid-rock interaction. Am. Mineral. 74, 721–737 (1989).

    CAS  Google Scholar 

  34. Bennet, D. G. & Barker, A. J. High salinity fluids: The result of retrograde metamorphism in thrust zones. Geochim. Cosmochim. Acta 56, 81–95 (1992).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work greatly benefited from discussions and suggestions of J. Ferry, K. Livi and, in particular, R. Frost, and from the help of H. Müller-Sigmund. Funding of this work by grants from the Deutsche Forschungsgemeinschaft is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregor Markl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Markl, G., Bucher, K. Composition of fluids in the lower crust inferred from metamorphic salt in lower crustal rocks. Nature 391, 781–783 (1998). https://doi.org/10.1038/35836

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35836

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing