Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Faster superoxide dismutase mutants designed by enhancing electrostatic guidance

Abstract

THE enzyme Cu, Zn superoxide dismutase (SOD) protects against oxidative damage by dismuting the superoxide radical O.−2 to molecular oxygen and hydrogen peroxide1–3 at the active-site Cuion4,5 in a reaction that is rate-limited by diffusion3,6 and enhanced by electrostatic guidance7–10. SOD has evolved to be one of the fastest enzymes known ( Vmax ~ 2 x 109 M−1 s−1)6,11. The new crystal structures of human SOD12 show that amino-acid site chains that are implicated in electrostatic guidance8 (Glu 132, Glu 133 and Lys 136) form a hydrogen-bonding network. Here we show that site-specific mutants that increase local positive charge while maintaining this orienting network (Glu→Gin) have faster reaction rates and increased ionic-strength dependence, matching brownian dynamics simulations incorporating electrostatic terms. Increased positive charge alone is insufficient: one charge reversal (Glu→Lys) mutant is slower than the equivalent charge neutralization (Glu→Gin) mutant, showing that the newly introduced positive charge disrupts the orienting network. Thus, electrostatically facilitated diffusion rates can be increased by design, provided the detailed structural integrity of the active-site electrostatic network is maintained.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Fridouich, I. in Advances in Enzymology Vol. 58 (ed. Meister, A.) 61–97 (Wiley, New York, 1986).

    Google Scholar 

  2. Halliwell, B. & Gutteridge, J. M. C. Free Radicals in Biology and Medicine 2nd edn (Clarendon, Oxford, 1989).

    Google Scholar 

  3. Tainer, J. A., Roberts, V. A., Fisher, C. L. Hallewell, R. A. & Getzoff, E. D. in A Study of Enzymes II. Mechanism of Enzyme Action (ed. Kuby, S. A.) 499–538 (CRC, Boca Raton, Florida, 1991).

    Google Scholar 

  4. Tainer, J. A., Getzoff, E. D., Beem, K. M., Richardson, J. S. & Richardson, D. C. J. molec. Biol. 160, 181–217 (1982).

    Article  CAS  Google Scholar 

  5. Tainer, J. A., Getzoff, E. D., Richardson, J. S. & Richardson, D. C. Nature 306, 284–287 (1983).

    Article  ADS  CAS  Google Scholar 

  6. Rotilio, G., Bray, R. C. & Fielden, E. M. Biochim. biophys. Acta 268, 605–609 (1972).

    Article  CAS  Google Scholar 

  7. Koppenol, W. H. in Oxygen and Oxy-Radicals in Chemistry and Biology (eds Rodgers, M. A. J. & Powers, E. L.) 671–674 (Academic, New York, 1981).

    Google Scholar 

  8. Getzoff, E. D. et al. Nature 306, 287–290 (1983).

    Article  ADS  CAS  Google Scholar 

  9. Sharp, K., Fine, R. & Honig, B. Science 236, 1460–1463 (1987).

    Article  ADS  CAS  Google Scholar 

  10. Sines, J. J., Allison, S. A. & McCammon, J. A. Biochemistry 29, 9403–9412 (1990).

    Article  CAS  Google Scholar 

  11. Klug, D., Rabani, J. & Fridovich, I. J. biol. Chem. 247, 4839–4842 (1972).

    CAS  Google Scholar 

  12. Parge, H. E., Hallewell, R. A. & Tainer, J. A. Proc. natn. Acad. Sci. U.S.A. (in the press).

  13. Cudd, A. & Fridovich, I. J. biol. Chem. 257, 11443–11447 (1982).

    CAS  Google Scholar 

  14. Argese, E., Viglino, P., Rotilio, G., Scarpa, M. & Rigo, A. Biochemistry 26, 3224–3228 (1987).

    Article  CAS  Google Scholar 

  15. Alberty, R. A. & Hammes, G. G. J. phys. Chem. 62, 154–159 (1958).

    Article  CAS  Google Scholar 

  16. Allison, S. A., Bacquet, R. J. & McCammon, J. A. Biopolymers 27, 251–269 (1988).

    Article  CAS  Google Scholar 

  17. Getzoff, E. D., Tainer, J. A., Stempien, M. M., Bell, G. I. & Hallewell, R. A. Proteins: Struct. Funct. Genet. 5, 322–336 (1989).

    Article  CAS  Google Scholar 

  18. Banci, L. et al. Inorg. Chem. 29, 2398–2403 (1990).

    Article  CAS  Google Scholar 

  19. Shen, J. & McCammon, J. A. J. chem. Phys. 158, 191–198 (1991).

    CAS  Google Scholar 

  20. Hallewell, R. A. et al. J. biol. Chem. 264, 5260–5268 (1989).

    CAS  PubMed  Google Scholar 

  21. Lepock, J. R., Frey, H. E. & Hallewell, R. A. J. biol. Chem. 265, 21612–21618 (1990).

    CAS  PubMed  Google Scholar 

  22. Hallewell, R. A. et al. Biochem. biophys. Res. Commun. 181, 474–480 (1991).

    Article  CAS  Google Scholar 

  23. Weiner, S. J. et al. J. Am. chem. Soc. 106, 765–784 (1984).

    Article  CAS  Google Scholar 

  24. Geysen, H. M. et al. Science 235, 1184–1190 (1987).

    Article  ADS  CAS  Google Scholar 

  25. Schwarz, H. A. J. chem. Ed. 58, 101–105 (1981).

    Article  CAS  Google Scholar 

  26. Steinman, H. J. biol. Chem. 262, 1882–1887 (1987).

    CAS  PubMed  Google Scholar 

  27. Büchel, D. E., Gronenborn, B. & Müller-Hill, B. Nature 283, 541–545 (1980).

    Article  ADS  Google Scholar 

  28. Hallewell, R. A. et al. Nucleic Acids Res. 13, 2017–2034 (1985).

    Article  CAS  Google Scholar 

  29. Hanahan, D. in DNA Cloning Vol. 1 (ed. Glover, D. M.) 109–135 (IRL, Oxford, UK, 1988).

    Google Scholar 

  30. Koshland, D. & Botstein, D. Cell 20, 749–765 (1980).

    Article  CAS  Google Scholar 

  31. Beyer, W. F. Jr, Fridovich, I., Mullenbach, G. T. & Hallewell, R. A. J. biol. Chem. 262, 11182–11187 (1987).

    CAS  PubMed  Google Scholar 

  32. Davis, M. E. & McCammon, J. A. J. comp. Chem. 12, 909–912 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Getzoff, E., Cabelli, D., Fisher, C. et al. Faster superoxide dismutase mutants designed by enhancing electrostatic guidance. Nature 358, 347–351 (1992). https://doi.org/10.1038/358347a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/358347a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing