Abstract
CHANGES in the isotope content of the large marine carbon reservoir can force shifts in that of the smaller carbon pools in the atmosphere and on land. The carbon isotope compositions of marine carbonate sediments from the late Palaeocene vary considerably, exhibiting a sudden decrease close to the Palaeocene/Eocene boundary which coincides with deep-sea benthic extinctions1 and with changes in ocean circulation. Here we report that these fluctuations in the marine carbon isotope record are closely tracked by the terrestrial records provided by palaeosol carbonates and mammalian tooth enamel. In using palaeosol carbonates to reconstruct the CO2 content of the ancient atmosphere2, isotope shifts of this sort will have to be taken into account. The sharp decrease in 13C/12C ratios in the late Palaeocene provides a datum for precise correlation of marine and continental records, and suggests that abrupt climate warming at this time may have played an important role in the evolution of land mammals.
Your institute does not have access to this article
Relevant articles
Open Access articles citing this article.
-
Elevated atmospheric CO2 promoted speciation in mosquitoes (Diptera, Culicidae)
Communications Biology Open Access 05 November 2018
-
A study on assessment of hydrocarbon potential of the lignite deposits of Saurashtra basin, Gujarat (Western India)
International Journal of Coal Science & Technology Open Access 30 November 2017
Access options
Subscribe to Journal
Get full journal access for 1 year
$199.00
only $3.90 per issue
All prices are NET prices.
VAT will be added later in the checkout.
Tax calculation will be finalised during checkout.
Buy article
Get time limited or full article access on ReadCube.
$32.00
All prices are NET prices.
References
Kennett, J. P. & Stott, L. D. Nature 353, 225–229 (1991).
Cerling, T. E. Am. J. Sci. 291, 377–400 (1991).
Aubry, M.-P. et al. Paleoceanography 3, 707–742 (1988).
Shackleton, N. J., Palaeogeogr. Palaeoclim. Palaeoecol. 57, 91–102 (1986).
Tjalsma, R. C. & Lohmann, G. P. Micropaleont. spec. Publ. 4 (Micropaleontology Press, New York, 1983).
Thomas, E. Proc. Ocean Drilling Prog. B 113, 571–594 (1990).
Pak, D. K., Miller, K. G. & Wright, J. D. Geol. Soc. Am. Abstr. A 141 (1991).
Thomas, E. Geol. Soc. Am. Abstr. 23(5), A141 (1991).
Barrera, E. Geol. Soc. Am. Abstr. 23(5), A179 (1991).
Sundquist, E. T. in The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present (eds Sundquist, E. T. & Broeker, W. S.) 5–59 (American Geophysical Union, 1985).
Thackeray, J. F. et al. Nature 347, 751–753 (1990).
Mook, W. G. Neth. J. Sea Res. 20, 211–223 (1986).
Popp, B. N., Takigiku, R., Hayes, J. M., Louda, J. W. & Baker, E. W. Am. J. Sci. 289, 436–454 (1989).
Raven, J. A. & Sprent, J. I. J. geol. Soc. Lond. 146, 161–170 (1989).
O'Leary, M. H., Bioscience 38, 328–336 (1988).
Lee-Thorp, J. A., Sealy, J. C. & van der Merwe, N. J. J. archaeol. Sci. 16, 585–599 (1989).
Quade, J. A., Cerling, T. E. & Bowman, J. R. Geol. Soc. Am. Bull. 101, 464–475 (1989).
Cerling, T. E., Solomon, D. K., Quade, J. & Bowman, J. R. Geochim. cosmochim. Acta 55, 3403–3405 (1991).
Cerling, T. E., Quade, J. A., Wang, Y. & Bowman, J. R. Nature 341, 138–139 (1989).
Mora, C. I., Driese, S. G. & Seager, P. G. Geology 19, 1017–1020 (1991).
Butler, R. F., Gingerich, P. D. & Lindsay, E. H. J. Geol. 89, 299–316 (1981).
Gingerich, P. D. Univ. Mich. Papers Paleontrol. 28, 1–97 (1989).
Lee-Thorp, J. A. & van der Merwe, N. J. J. archaeol. Sci. 19, 343–354 (1991).
Lee-Thorp, J. A. & van der Merwe, N. J. S. Afr. J. Sci. 83, 71–74 (1987).
Bown, T. M. & Kraus, M. J. Palaeogeogr. Palaeoclim. Palaeoecol. 34, 1–30 (1981).
Wing, S. L. Science 226, 439–441 (1984).
Wing, S. L., Bown, T. M. & Obradovich, J. D. Geology 19, 1189–1192 (1991).
Wright, V. P. & Vanstone, S. D. J. geol. Soc. Lond. 148, 945–947 (1991).
Berner, R. A. Am. J. Sci. 291, 339–376 (1989).
Stott, L. D., Kennett, J. P., Shackleton, N. J. & Corfield, R. M. Proc. ODP Scient. Results 113 (eds Barker, P. F. et al.) 849–863 (Ocean Drilling Program, College Station, Texas, 1990).
Shackleton, N. J., Hall, M. A. & Boersma, A. Init. Rep. DSDP 74 (eds Moore, T. C. et al.) 599–612 (U.S. Government Printing Office, Washington DC, 1984).
Corfield, R. M., Cartlidge, J. E. & Shackleton, N. J. Paleoceanography (submitted).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Koch, P., Zachos, J. & Gingerich, P. Correlation between isotope records in marine and continental carbon reservoirs near the Palaeocene/Eocene boundary. Nature 358, 319–322 (1992). https://doi.org/10.1038/358319a0
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/358319a0
Further reading
-
Elevated atmospheric CO2 promoted speciation in mosquitoes (Diptera, Culicidae)
Communications Biology (2018)
-
Mud-entrained macroalgae utilise porewater and overlying water column nutrients to grow in a eutrophic intertidal estuary
Biogeochemistry (2018)
-
Calcareous Nannofossil Assemblage Changes and Paleoecology of the Selandian to Ypresian in Izmit Province, Northwest Turkey
Arabian Journal for Science and Engineering (2017)
-
A study on assessment of hydrocarbon potential of the lignite deposits of Saurashtra basin, Gujarat (Western India)
International Journal of Coal Science & Technology (2017)
-
Paleomires of Eocene lignites of Bhavnagar, Saurashtra basin (Gujarat), western India: Petrographic implications
Journal of the Geological Society of India (2017)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.