Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Antarctic ice volume and contribution to sea-level fall at 20,000 yr BP from raised beaches

Abstract

THE contribution of the Antarctic ice sheets to global sea-level fall at the Last Glacial Maximum (LGM) depends largely on how the extent and thickness of peripheral ice changed. Model studies1–3 suggest that there was widespread thickening (from 500 m to more than 1,000 m) of the ice-sheet margins, sufficient to induce a drop in sea level of at least 25 m. Geological evidence4,5, on the other hand, indicates only limited ice expansion and a sea-level fall of just 8 m. Here we use recent data on the altitudes and ages of raised beaches from the Ross embayment and East Antarctica to investigate the timing and extent of Antarctic deglaciation. These indicate that the ice margin during the LGM was thinner and less extensive than has been formerly thought, and that its contribution to the drop in sea level was only 0.5–2.5 m. Deglaciation was well advanced by 10 kyr BP and was complete by 6 kyr BP. These findings imply either that sea level during the LGM fell less than present estimates suggest, or that an ice volume considerably greater than currently accepted must have been present in the Northern Hemisphere.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Voronov, P. S. Inform. Bull. Soc. Antarct. Expedition 23, 15–19 (1960).

    Google Scholar 

  2. Hollin, J. T. J. Glaciol. 4, 173–195 (1962).

    Article  ADS  Google Scholar 

  3. Stuiver, M., Denton, G. H., Hughes, T. J. & Fastook, J. L. in The Last Great Ice Sheets (eds Denton, G. H. & Hughes, T. J.) 319–436 (Wiley, New York, 1981).

    Google Scholar 

  4. Drewry, D. J. J. Glaciol. 34, 231–244 (1979).

    Article  Google Scholar 

  5. Mayewski, P. A. & Goldthwait, R. P. Antarct. Res. Series 36, 275–324 (1985).

    Article  Google Scholar 

  6. Mabin, M. C. G. South Afr. J. Sci. 82, 506–508 (1986).

    Google Scholar 

  7. Kirk, R. M. in Quat. Research In Australian Antarctica Future Directions, Sp. Publ 3, 85–105 (Department of Geography and Oceanography, ADFA, Canberra, 1991).

    Google Scholar 

  8. Denton, G. H., Bockheim, J. C., Wilson, S. C. & Stuiver, M. Quat. Res. 31, 151–182 (1989).

    Article  CAS  Google Scholar 

  9. Goodwin, I. D. Quat. Res. (in the press).

  10. Bolshiyanov, D., Verkulich, S., Pushina, Z. & Kirienko, E. in Abstr. 6th Int. Symp. Antarctic Earth Sciences (National Institute Polar Research, Japan, 1991).

  11. Colhoun, E. A. Polar Record 27, 345–355 (1991).

    Article  Google Scholar 

  12. Omoto, K. Science Reports Tohoku University 7th Series (Geography) 27(2), 95–148 (1977).

    Google Scholar 

  13. Robin, G. de Q. Nature 316, 578–579 (1985).

    Article  ADS  Google Scholar 

  14. Lorius, C., Raynaud, D., Petit, J. R. Jouzel, J. & Merlivat, L. Ann. Glaciol. 5, 88–94 (1984).

    Article  ADS  Google Scholar 

  15. Jouzel, J. et al. Quat. Res. 31, 135–150 (1989).

    Article  CAS  Google Scholar 

  16. Grootes, P. M. & Stuiver, M. Int. Assoc. Hydrol. Sci. 170, 269–282 (1987).

    Google Scholar 

  17. Barrett, P. J. (ed.) N.Z., D.S.I.R. Bull. 245 (Wellington, 1989).

  18. Hambrey, M. J. et al. Polar Record 25, 99–106 (1989).

    Article  Google Scholar 

  19. Domack, E. W., Jull, A. J. T., Anderson, J. B. & Linick, T. in Geological Evolution of Antarctica, 693–698 (Cambridge Univ. Press 1991).

    Google Scholar 

  20. Adamson, D. A. & Colhoun, E. A. Antarct. Sci. (in the press).

  21. Adamson, D. A. & Pickard, J. in Antarctic Oasis (Pickard, J.) 63–97 (Academic, Sydney, 1986).

    Google Scholar 

  22. Clark, J. A. & Lingle, C. S. Quat. Res. 11, 279–298 (1978).

    Article  Google Scholar 

  23. Fairbanks, R. G. Nature 342, 637–642 (1989).

    Article  ADS  Google Scholar 

  24. Andrews, J. T. Can. J. Earth Sci. 5, 39–47 (1968).

    Article  ADS  Google Scholar 

  25. Tushingham, A. M. & Peltier, W. R. J. geophys. Res. 96, 4497–4523 (1991).

    Article  ADS  Google Scholar 

  26. Nakada, M. & Lambeck, K. Nature 333, 36–40 (1988).

    Article  ADS  Google Scholar 

  27. Colhoun, E. A. & Adamson, D. A. ANARE Res. Rep. No. 136 (Dassett, Canberra, 1992).

  28. Behrendt, J. C. & Cooper, A. Geology 19, 315–319 (1991).

    Article  ADS  Google Scholar 

  29. Peltier, W. R. & Tushingham, A. M. Science 244, 806–810 (1989).

    Article  ADS  CAS  Google Scholar 

  30. Lambeck, K. Palaeogeogr. Palaeoclim. Palaeoecol. 89, 205–217 (1990).

    Article  ADS  Google Scholar 

  31. Drewry, D. J. Glaciological and Geophysical Folio (Scott Polar Research Institute, Cambridge, 1983).

    Google Scholar 

  32. Chinn, T. J. H., Whitehouse, I. E. & Hoefle, H. C. Geol. Jb. E38, 299–319 (1989).

    Google Scholar 

  33. Baroni, C. & Orombelli, G. Quat. Res. 36, 157–177 (1991).

    Article  CAS  Google Scholar 

  34. Speir, T. W. & Cowling, J. C. Polar Biol. 2, 199–205 (1984).

    Article  Google Scholar 

  35. Nichols, R. J. J. Glaciol. 7, 449–478 (1968).

    Article  ADS  Google Scholar 

  36. Cameron, R. L. Am. geophys. Un. Antarct. Res. Series 2, 1–36 (1964).

    Google Scholar 

  37. Zhang, Q. & Peterson, J. A. ANARE Res. Rep. No. 133 (1984).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Colhoun, E., Mabin, M., Adamson, D. et al. Antarctic ice volume and contribution to sea-level fall at 20,000 yr BP from raised beaches. Nature 358, 316–319 (1992). https://doi.org/10.1038/358316a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/358316a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing