Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Slowing down of the global accumulation of atmospheric methane during the 1980s

Abstract

MEASUREMENTS of methane in modern air1–8 and in air trapped in ice cores9–12 have shown convincingly that the abundance of atmospheric methane has been rising since the Industrial Revolution. This is a matter of concern because of the important role of methane in determining the radiative balance and chemical composition of the atmosphere13. The causes of this increase have not been identified unambiguously because of uncertainties in our understanding of the global budget of atmospheric methane14 and in how it is changing with time. Here we report on measurements of atmospheric methane from an extensive global network of flask sampling sites, which reveal that, although methane continues to accumulate in the atmosphere, there has been a substantial slowing of the global accumulation rate between 1983 and 1990. If this deceleration continues steadily, global methane concentrations will reach a maximum around the year 2006. Our results hint that changes in methane emissions in the latitude band 30–90° N may be of particular significance to this trend.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Khalil, M. A. K. & Rasmussen, R. A. J. geophys. Res. 88, 5131–5144 (1983).

    Article  ADS  CAS  Google Scholar 

  2. Fraser, P. J., Hyson, P., Rasmussen, R. A., Crawford, A. J. & Khalil, M. A. K. J. atmos. Chem. 4, 3–42 (1986).

    Article  CAS  Google Scholar 

  3. Blake, D. R. & Rowland, F. S. J. atmos. Chem. 4, 43–62 (1986).

    Article  CAS  Google Scholar 

  4. Steele, L. P. et al. J. atmos. Chem. 5, 125–171 (1987).

    Article  CAS  Google Scholar 

  5. Blake, D. R. & Rowland, F. S. Science 239, 1129–1131 (1988).

    Article  ADS  CAS  Google Scholar 

  6. Zander, R., Demoulin, Ph., Ehhalt, D. H. & Schmidt, U. J. J. geophys. Res. 94, 11029–11039 (1989).

    Article  ADS  Google Scholar 

  7. Brunke, E. G., Scheel, H. E. & Seiler, W. Atmos. Envir. A24, 585–595 (1990).

    Article  Google Scholar 

  8. Khalil, M. A. K. & Rasmussen, R. A. Envir. Sci. Technol. 24, 549–553 (1990).

    Article  ADS  CAS  Google Scholar 

  9. Etheridge, D. M., Pearman, G. I. & de Silva, F. Ann. Glaciol. 10, 28–33 (1988).

    Article  ADS  CAS  Google Scholar 

  10. Stauffer, B., Fischer, G., Neftel, A. & Oeschger, H. Science 229, 1386–1388 (1985).

    Article  ADS  CAS  Google Scholar 

  11. Chappellaz, J., Barnola, J. M., Raynaud, D., Korotkevich, Y. S. & Lorius, C. Nature 345, 127–131 (1990).

    Article  ADS  CAS  Google Scholar 

  12. Etheridge, D. M., Pearman, G. I. & Fraser, P. J. Tellus (in the press).

  13. Cicerone, R. J. & Oremland, R. S. Global biogeochem. Cycles 2, 299–327 (1988).

    Article  ADS  CAS  Google Scholar 

  14. Fung, I. et al. J. geophys. Res. 96, 13033–13065 (1991).

    Article  ADS  CAS  Google Scholar 

  15. Lang, P. M., Steele, L. P., Martin, R. C. & Masarie, K. A. NOAA Tech. Memo. ERL CMDL-1 (U.S. Dept of Commerce, Boulder, 1990).

    Google Scholar 

  16. Lang, P. M., Steele, L. P. & Martin, R. C. NOAA Tech. Memo. ERL CMDL-2 (U.S. Dept of Commerce. Boulder, 1990).

    Google Scholar 

  17. Steele, L. P. & Lang, P. M. ORNL/CDIAC-42, NDP-038 (Carbon Dioxide Information Analysis Center, Oak Ridge Nat. Lab., Tennessee, 1991).

  18. Tans, P. P., Conway, T. J. & Nakazawa, T. J. geophys. Res. 94, 5151–5172 (1989).

    Article  ADS  CAS  Google Scholar 

  19. Thoning, K. W., Tans, P. P. & Komhyr, W. D. J. geophys. Res. 94, 8549–8565 (1989).

    Article  ADS  CAS  Google Scholar 

  20. Diaconis, P. & Efron, B. Scient. Am. 248, 116–130 (May, 1983).

    Article  Google Scholar 

  21. Steele, L. P., Lang, P. M. & Martin, R. C. Antarct. J. U.S. 24, 239–241 (1989).

    Google Scholar 

  22. Bradley, R., Diaz, H., Kiladis, G. & Eischeid, J. Nature 327, 497–501 (1987).

    Article  ADS  Google Scholar 

  23. Philander, S. G. H. J. atmos. Sci. 42, 2652–2662 (1985).

    Article  ADS  Google Scholar 

  24. Webster, P. J. & Holton, J. R. J. atmos. Sci. 39, 722–733 (1982).

    Article  ADS  Google Scholar 

  25. Prinn, R. et al. J. geophys. Res. 97, 2445–2461 (1992).

    Article  ADS  CAS  Google Scholar 

  26. Vaghjiani, G. L. & Ravishankara, A. R. Nature 350, 406–409 (1991).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steele, L., Dlugokencky, E., Lang, P. et al. Slowing down of the global accumulation of atmospheric methane during the 1980s. Nature 358, 313–316 (1992). https://doi.org/10.1038/358313a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/358313a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing