Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Structure of astacin and implications for activation of astacins and zinc-ligation of collagenases

Abstract

ASTACIN, a digestive zinc-endopeptidase from the crayfish Astacus astacus L.1,2, is the prototype for the 'astacin family'3–5, which includes mammalian metallo-endopeptidases5 and develop-mentally regulated proteins of man6, fruitfly7, frog8 and sea urchin9,10. Here we report the X-ray crystal structure of astacin, which reveals a deep active-site cleft, with the zinc at its bottom ligated by three histidines, a water molecule and a more remote tyrosine. The third histidine (His 102) forms part of a consensus sequence, shared not only by the members of the astacin family, but also by otherwise sequentially unrelated proteinases, such as vertebrate collagenases11. It may therefore represent the elusive 'third' zinc ligand in these enzymes. The amino terminus of astacin is buried forming an internal salt-bridge with Glu 103, adjacent to His 102. Astacin pro-forms extended at the N terminus, as observed for some 'latent' mammalian astacin homologues, did not exhibit this 'active' conformation, indicating an activation mechanism reminiscent of trypsin-like serine proteinases.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

References

  1. Stöcker, W., Wolz, R. L., Zwilling, R., Strydom, D. J. & Auld, D. S. Biochemistry 27, 5026–5032 (1988).

    Article  Google Scholar 

  2. Titani, K. et al. Biochemistry 26, 222–226 (1987).

    CAS  Article  Google Scholar 

  3. Stöcker, W., Sauer, B. & Zwilling, R. Biol. Chem. Hoppe-Seyler 372, 385–392 (1991).

    Article  Google Scholar 

  4. Barrett, A. J. & Rawlings, D. Biochem. Soc. Trans. 19, 707–715 (1991).

    CAS  Article  Google Scholar 

  5. Dumermuth, E. et al. J. biol. Chem. 266, 21381–21385 (1991).

    CAS  PubMed  Google Scholar 

  6. Wozney, J. M. et al. Science 242, 1528–1534 (1988).

    ADS  CAS  Article  Google Scholar 

  7. Shimell, M. J., Ferguson, E. L., Childs, S. R. & O'Connor, M. B. Cell 67, 469–481 (1991).

    CAS  Article  Google Scholar 

  8. Sato, S. M. & Sargent, T. D. Dev. Biol. 137, 135–141 (1990).

    CAS  Article  Google Scholar 

  9. Reynolds, S. D., Angerer, L. M., Palis, J., Nasir, A. & Angerer, R. C. Development 114, 769–786 (1992).

    CAS  PubMed  Google Scholar 

  10. Lepage, T., Ghiglione, C. & Cache, C. Development 114, 147–164 (1992).

    CAS  PubMed  Google Scholar 

  11. Stöcker, W., Ng, M. & Auld, D. S. Biochemistry 29, 10418–10425 (1990).

    Article  Google Scholar 

  12. Matthews, B. W., Jansonius, J. N., Colman, P. M., Schoenborn, B. P. & Dupourque, D. Nature new Biol. 238, 37–41 (1972).

    CAS  Article  Google Scholar 

  13. Pauptit, R. A. et al. J. molec. Biol. 199, 525–537 (1988).

    CAS  Article  Google Scholar 

  14. Thayer, M. M., Flaherty, K. M. & McKay, D. B. J. biol. Chem. 266, 2864–2871 (1991).

    CAS  PubMed  Google Scholar 

  15. Lipscomb, W. N. et al. Brookhaven Symp. Biol. 21, 24–90 (1968).

    CAS  PubMed  Google Scholar 

  16. Matthews, B. W. Accts chem. Res. 21, 333–340 (1988).

    CAS  Article  Google Scholar 

  17. Vallee, B. L. & Auld, D. S. Biochemistry 29, 5647–5659 (1990).

    CAS  Article  Google Scholar 

  18. Kounnas, M. Z., Wolz, R. L., Gorbea, C. M. & Bond, J. S. J. biol. Chem. 266, 17530–17537 (1991).

    Google Scholar 

  19. Huber, R. & Bode, W. Accts chem. Res. 11, 114–122 (1978).

    CAS  Article  Google Scholar 

  20. Springman, E. B., Angleton, E. L., Birkedal-Hansen, H. & Van Wart, H. E. Proc. natn. Acad. Sci. U.S.A. 87, 364–368 (1990).

    ADS  CAS  Article  Google Scholar 

  21. Goldberg, G. J. et al. J. biol. Chem. 261, 6600–6605 (1986).

    CAS  PubMed  Google Scholar 

  22. Shannon, J. D., Baramova, E. N., Bjarnason, J. B. & Fox, J. W. J. biol. Chem. 264, 11575–11583 (1989).

    CAS  PubMed  Google Scholar 

  23. Whitham, S. E. et al. Biochem. J. 240, 913–916 (1986).

    CAS  Article  Google Scholar 

  24. Titani, K., Hermodson, M. A., Ericsson, L. H., Walsh, K. A. & Neurath, H. Nature new Biol. 238, 35–37 (1972).

    CAS  Article  Google Scholar 

  25. Turk, D. thesis, Technische Universität, München (1992).

  26. Priestle, J. P. J. appl. Crystallogr. 21, 572–576 (1988).

    Article  Google Scholar 

  27. Messerschmidt, A. & Pflugrath, J. W. J. appl. Crystallogr. 20, 306–315 (1987).

    CAS  Article  Google Scholar 

  28. Brünger, A. T. X-PLOR Manual version 2.1 (Yale University, New Haven, 1990).

    Google Scholar 

  29. Jones, T. A. Acta Crystallogr. A34, 931–935 (1978).

    Article  Google Scholar 

  30. Bernstein, F. C. et al. J. molec. Biol. 122, 535–542 (1977).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bode, W., Gomis-Rüth, F., Huber, R. et al. Structure of astacin and implications for activation of astacins and zinc-ligation of collagenases. Nature 358, 164–167 (1992). https://doi.org/10.1038/358164a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/358164a0

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing