Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Voltage-dependent phosphorylation may recruit Ca2+ current facilitation in chromaff in cells

Abstract

BOVINE chromaffin cells have two components of whole-cell Ca2+ current: 'standard' Ca2+ currents that are activated by brief depolarizations, and 'facilitation' Ca2+ currents, which are normally quiescent but can be activated by large pre-depolarizations or by repetitive depolarizations to physiological potentials1–5. The activation of protein kinase A can also stimulate Ca2+ current facilitation, indicating that phosphorylation can play a part in facilitation6. Here we investigate the role of protein phosphorylation in the recruitment of facilitation Ca2+ currents by prepulses or repetitive depolarizations. We find that recruitment of facilitation by depolarization is a rapid first-order process which is suppressed by inhibitors of protein phosphorylation or by injection of phosphatase 2A into cells. Recruitment of facilitation Ca2+ current by voltage is normally reversible but phosphatase inhibitors render it irreversible. Our results indicate that recruitment of these Ca2+ currents by prepulses or repetitive depolarizations involves voltage-dependent phosphorylation of the facilitation Ca2+ channel or a closely associated regulatory protein. Voltage-dependent phosphorylation may therefore be a mechanism by which membrane potential can modulate ion channel activity.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Fenwick, E. M., Marty, A. & Neher, E. J. Physiol. 331, 599–635 (1982).

    Article  CAS  Google Scholar 

  2. Hoshi, T., Rothlein, J. & Smith, S. J. Proc. natn. Acad. Sci. U.S.A. 81, 5871–5875 (1984).

    Article  ADS  CAS  Google Scholar 

  3. Hoshi, T. & Smith, S. J. J. Neurosci. 7, 571–580 (1987).

    Article  CAS  Google Scholar 

  4. Artalejo, C. R., Dahmer, M. K., Perlman, R. L. & Fox, A. P. J. Physiol., Lond. 432, 681–707 (1990).

    Article  Google Scholar 

  5. Artalejo, C. R., Mogul, D. J., Perlman, R. L. & Fox, A. P. J. Physiol., Lond. 444, 213–240 (1991).

    Article  CAS  Google Scholar 

  6. Artalejo, C. R., Ariano, M. A., Perlman, R. L. & Fox, A. P. Nature 348, 239–242 (1990).

    Article  ADS  CAS  Google Scholar 

  7. Yatani, A. et al. Science 238, 1288–1292 (1987).

    Article  ADS  CAS  Google Scholar 

  8. Yatani, A. & Brown, A. M. Science 245, 71–74 (1989).

    Article  ADS  CAS  Google Scholar 

  9. Hidaka, H., Inagaki, M., Kawamoto, S. & Sasaki, Y. Biochemistry 23, 5036–5041 (1984).

    Article  CAS  Google Scholar 

  10. Nestler, E. J. & Greengard, P. in Basic Neurochemistry: Molecular, Cellular and Medical Aspects 4th edn (eds Siegel, G. J., Agranoff, B. W., Albers, R. W. & Molinoff, P. B.) (Raven, New York, 1989).

    Google Scholar 

  11. Amador, M. & Dani, J. A. Neurosci. Lett. 124, 251–255 (1991).

    Article  CAS  Google Scholar 

  12. Kase, H. et al. Biochem. biophys. Res. Commun. 142, 436–440 (1987).

    Article  CAS  Google Scholar 

  13. Heschelet, J., Mieskes, G., Rüegg, J. C., Takai, A. & Trautwein, W. Pflügers Archiv. 412, 248–252 (1988).

    Article  Google Scholar 

  14. Cohen, P., Holmes, C. F. B. & Tsukitani, Y. Trends biochem. Sci. 15, 98–102 (1990).

    Article  CAS  Google Scholar 

  15. Yount, R. G. Adv. Enzym. 34, 1–56 (1975).

    Google Scholar 

  16. Gratecos, D. & Fischer, E. H. Biochem. biophys. Res. Commun. 58, 960–967 (1977).

    Article  Google Scholar 

  17. Haavik, J. et al. FEBS. Lett. 251, 36–42 (1989).

    Article  CAS  Google Scholar 

  18. Hescheler, J., Kameyama, M., Trautwein, W., Mieskes, G. & Söling, H-D. Eur. J. Biochem. 165, 261–266 (1987).

    Article  CAS  Google Scholar 

  19. Cohen, P. et al. Meth. Enzym. 159, 390–408 (1988).

    Article  CAS  Google Scholar 

  20. Tessmer, G. W., Skuster, J. R., Tabatabai, L. B. & Graves, D. J. J. biol. Chem. 252, 5666–5671 (1977).

    CAS  PubMed  Google Scholar 

  21. Almers, W. A. Rev. Physiol. 52, 607–624 (1990).

    Article  CAS  Google Scholar 

  22. Hausdorff, W. P., Caron, M. G. & Lefkowitz, R. L. FASEB J. 4, 2881–2889 (1990).

    Article  CAS  Google Scholar 

  23. Imagawa, T., Leung, A. T. & Campbell, K. P. J. biol. Chem. 262, 8333–8339 (1987).

    CAS  PubMed  Google Scholar 

  24. Chung, S., Reinhart, P. H., Martin, B. L., Brautigan, D. & Levitan, I. B. Science 253, 56–562 (1991).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Artalejo, C., Rossie, S., Perlman, R. et al. Voltage-dependent phosphorylation may recruit Ca2+ current facilitation in chromaff in cells. Nature 358, 63–66 (1992). https://doi.org/10.1038/358063a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/358063a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing