Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Dehydration melting and the generation of continental flood basalts

Abstract

CONTINENTAL flood basalt provinces represent important magmatic events, which may contribute significantly to the generation of new crust. In a typical flood basalt province, large volumes of magma are erupted in a short time: for example, at least 106 km3 in 2–3 Myr in the Paraná–Etendeka province of southeast Brazil and northern Namibia. In many areas flood basalts are associated with mantle plumes, but details of their origin, such as the site of major-element melting, remain unresolved. Recent authors1–3 have assumed that partial melting took place at the anhydrous peridotite solidus, and thus concluded that during continental extension, more than 95% of the erupted magmas are generated in the sublithospheric upper mantle. In this situation, the distinctive isotope and trace element geochemistry of the basalts is attributed not to this process, but to the addition of low-degree partial melts scavenged from the overlying lithosphere4. Here we present an alternative model in which, in the presence of small amounts of water (0.4%), the observed quantities of melt may be generated entirely within the mantle lithosphere. As rifting proceeds, however, the basalts acquire an increasingly 'asthenospheric' chemistry, as melts from the asthenosphere come to dominate those from the lithosphere.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. White, R. S. & McKenzie, D. P. J. geophys. Res. 94, 7685–77302 (1989).

    Article  ADS  Google Scholar 

  2. McKenzie, D. & Bickle, M. J. J. Petrol. 29, 625–679 (1988).

    Article  ADS  CAS  Google Scholar 

  3. Arndt, N. T. & Christensen, U. J. geophys. Res. (in the press).

  4. Ellam, R. M. & Cox, K. G. Earth planet. Sci. Lett. 105, 330–342 (1991).

    Article  ADS  CAS  Google Scholar 

  5. Hawkesworth, C. J. et al. Geol. Soc. Lond. spec. Publ. (in the press).

  6. Mantovani, M. S. M. & Hawkesworth, C. J. Contrib. miner. Petrol. 105, 289–302 (1990).

    Article  ADS  CAS  Google Scholar 

  7. Peate, D. W. thesis, Open Univ. (1989).

  8. Hergt, J., Peate, D. W. & Hawkesworth, C. J. Earth planet. Sci. Lett. 105, 134–148 (1991).

    Article  ADS  CAS  Google Scholar 

  9. Green, D. H. Earth planet. Sci. Lett. 19, 36–53 (1973).

    ADS  Google Scholar 

  10. Mysen, B. O. & Boettcher, A. L. J. Petrol. 16, 549–593 (1975).

    Article  ADS  CAS  Google Scholar 

  11. Olafsson, M. & Eggler, D. H. Earth planet. Sci. Lett. 64, 305–315 (1983).

    Article  ADS  CAS  Google Scholar 

  12. Kushiro, I., J. geophys. Res. 95, 15929–15939 (1990).

    Article  ADS  Google Scholar 

  13. Boyd, F. R. & Mertzman, S. A. Geochem. Soc. spec. Publ. 1, 13–24 (1987).

    CAS  Google Scholar 

  14. Hawkesworth, C. J., Kempton, P. D., Rogers, N. W., Ellam, R. M. & van Calsteren, P. W. Earth planet Sci. Lett 96, 256–268 (1990).

    Article  ADS  CAS  Google Scholar 

  15. Kushiro, I., Yoder, H. S. & Nishikawa, M. Bull. geol. Soc. Am. 79, 1685–1692 (1968).

    Article  CAS  Google Scholar 

  16. Gurnis, M. Geophys. Res. Lett. 13, 1474–1477 (1986).

    Article  ADS  Google Scholar 

  17. Furlong, K. P. & Fountain, D. M. J. geophys. Res. 91, 8285–8294 (1986).

    Article  ADS  Google Scholar 

  18. Watson, S. & McKenzie, D. J. Petrol. 32, 501–537 (1991).

    Article  ADS  CAS  Google Scholar 

  19. Nürnberg, D. & Müller, R. D. Tectonophysics 292, 27–53 (1991).

    Article  ADS  Google Scholar 

  20. Green, T. H. in Andesites: Orogenic Andesites and Related Rocks (ed. Thorpe, R. S.) 465–488 (Wiley, New York, 1982).

    Google Scholar 

  21. McKenzie, D. J. Petrol. 25, 713–765 (1984).

    Article  ADS  CAS  Google Scholar 

  22. Fitton, J. G., James, D. & Leeman, W. P. J. geophys. Res. 96, 13693–13711 (1991).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gallagher, K., Hawkesworth, C. Dehydration melting and the generation of continental flood basalts. Nature 358, 57–59 (1992). https://doi.org/10.1038/358057a0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/358057a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing