Abstract
Two novel subunits of the mouse NMDA receptor channel, the ɛ2 and ɛ3 subunits, have been identified by cloning and expression of complementary DMAs. The heteromeric ɛ1/ζ1, ɛ2/ζ1 and ɛ3/ζ1 NMDA receptor channels exhibit distinct functional properties in affinities for agonists and sensitivities to competitive antagonists and Mg2+ block. In contrast to the wide distribution of the ɛ1 and ζ1 subunit messenger RNAs in the brain, the ɛ2 subunit mRNA is expressed only in the forebrain and the ɛ3 subunit mRNA is found predominantly in the cerebellum. The ɛl/ζ1 and ɛ2/ζ1 channels expressed in Xenopus oocytes, but not the ɛ3/ζ1 channel, are activated by treatment with 12-O-tetradecanoylphorbol 13-acetate. These findings suggest that the molecular diversity of the ɛ subunit family underlies the functional heterogeneity of the NMDA receptor channel.
Access options
Subscribe to Journal
Get full journal access for 1 year
$199.00
only $3.90 per issue
All prices are NET prices.
VAT will be added later in the checkout.
Rent or Buy article
Get time limited or full article access on ReadCube.
from$8.99
All prices are NET prices.
References
- 1
Mayer, M. L. & Westbrook, G. L. Prog. Neurobiol. 28, 197–276 (1987).
- 2
Collingridge, G. L. & Bliss, T. V. P. Trends Neurosci. 10, 288–293 (1987).
- 3
Ito, M. A. Rev. Neuroscl. 12, 85–102 (1989).
- 4
McDonald, J. W. & Johnston, M. V. Brain Res. Rev. 15, 41–70 (1990).
- 5
Choi, D. W. Neuron 1, 623–634 (1988).
- 6
Olney, J. W. A. Rev. Pharmac. Tox. 30, 47–71 (1990).
- 7
Monaghan, D. T., Bridges, R. J. & Cotman, C. W. A. Rev. Pharmac. Tox. 29, 365–402 (1989).
- 8
Hollmann, M., O'Shea-Greenfield, A., Rogers, S. W. & Heinemann, S. Nature 342, 643–648 (1989).
- 9
Keinänen, K. et al. Science 249, 556–560 (1990).
- 10
Boulter, J. et al. Science 249, 1033–1037 (1990).
- 11
Nakanishi, N., Shneider, N. A. & Axel, R. Neuron 5, 569–581 (1990).
- 12
Sakimura, K. et al. FEBS Lett. 272, 73–80 (1990).
- 13
Bettler, B. et al. Neuron 5, 583–595 (1990).
- 14
Egebjerg, J., Bettler, B., Hermans-Borgmeyer, I. & Heinemann, S. Nature 351, 745–748 (1991).
- 15
Morita, T. et al. Molec. Brain Res. 14, 143–146 (1992).
- 16
Werner, P., Voigt, M., Keinänen, K., Wisden, W. & Seeburg, P. H. Nature 351, 742–744 (1991).
- 17
Sakimura, K., Morita, T., Kushiya, E. & Mishina, M. Neuron 8, 267–274 (1992).
- 18
Moriyoshi, K. et al. Nature 354, 31–37 (1991).
- 19
Yamazaki, M., Mori, H., Araki, K., Mori, K. J. & Mishina, M. FEBS Lett. 300, 39–45 (1992).
- 20
Yamazaki, M., Araki, K., Shibata, A. & Mishina, M. Biochem. biophys. Res. Commun. 183, 886–892 (1992).
- 21
Meguro, H. et al. Nature 357, 70–74 (1992).
- 22
Puckett, C. et al. Proc. natn. Acad. Sci. U.S.A. 88, 7557–7561 (1991).
- 23
Garthwaite, J. & Brodbelt, A. R. Neuroscience 29, 401–412 (1989).
- 24
Monaghan, D. T. et al. Proc. natn. Acad. Sci. U.S.A. 85, 9836–9840 (1988).
- 25
Monaghan, D. T. & Anderson, K. J. in Excitatory Amino Acids and Synaptic Transmission (eds Wheal, H. & Thomson, A.) 33–54 (Academic, San Diego, 1991).
- 26
Hume, R. I., Dingledine, R. & Heinemann, S. Science 253, 1028–1031 (1991).
- 27
Mishina, M. et al. Biochem. biophys. Res. Commun. 180, 813–821 (1991).
- 28
Burnashev, N., Monyer, H., Seeburg, P. H. & Sakmann, B. Neuron 8, 189–198 (1992).
- 29
Davies, J., Francis, A. A., Jones, A. W. & Watkins, J. C. Neurosci. Lett. 21, 77–81 (1981).
- 30
Kemp, J. A. et al. Proc. natn. Acad. Sci. U.S.A. 85, 6547–6550 (1988).
- 31
Leonard, J. P. & Kelso, S. R. Neuron 4, 53–60 (1990).
- 32
Tamaoki, T. et al. Biochem. biophys. Res. Commun. 135, 397–402 (1986).
- 33
Silver, R. A., Traynelis, S. F. & Cull-Candy, S. G. Nature 355, 163–166 (1992).
- 34
Howe, J. R., Cull-Candy, S. G. & Colquhoun, D. J. Physiol. 432, 143–202 (1991).
- 35
Traynelis, S. F. & Cull-Candy, S. G. J. Physiol. 433, 727–763 (1991).
- 36
von Heijne, G. Nucleic Acids Res. 14, 4683–4690 (1986).
- 37
Pearson, R. B., Woodgett, J. R., Cohen, P. & Kemp, B. E. J. biol. Chem. 260, 14471–14476 (1985).
- 38
Sanger, F., Nicklen, S. & Coulson, A. R. Proc. natn. Acad. Sci. U.S.A. 74, 5463–5467 (1977).
- 39
Usui, H. et al. Molec. chem. Neuropath. 15, 207–216 (1991).
Author information
Affiliations
Rights and permissions
About this article
Cite this article
Kutsuwada, T., Kashiwabuchi, N., Mori, H. et al. Molecular diversity of the NMDA receptor channel. Nature 358, 36–41 (1992). https://doi.org/10.1038/358036a0
Received:
Accepted:
Issue Date:
Further reading
-
Reduced GluN1 in mouse dentate gyrus is associated with CA3 hyperactivity and psychosis-like behaviors
Molecular Psychiatry (2020)
-
Spinal CCL2 Promotes Pain Sensitization by Rapid Enhancement of NMDA-Induced Currents Through the ERK-GluN2B Pathway in Mouse Lamina II Neurons
Neuroscience Bulletin (2020)
-
The role of cyclin-dependent kinase 5 in neuropathic pain
Pain (2020)
-
Alteration in NMDA Receptor Mediated Glutamatergic Neurotransmission in the Hippocampus During Senescence
Neurochemical Research (2019)
-
Cathepsin C promotes microglia M1 polarization and aggravates neuroinflammation via activation of Ca2+-dependent PKC/p38MAPK/NF-κB pathway
Journal of Neuroinflammation (2019)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.