Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Grain-boundary graphite in Kapuskasing gneisses and implications for lower-crustal conductivity

Abstract

SURFACE electromagnetic measurements commonly reveal that the intermediate and lower continental crust has an appreciable electrical conductivity, much higher than that found for laboratory analogues of deep-crustal rocks or for upper-crustal rocks either formed at shallow depths or uplifted from deeper levels. Conducting films at grain boundaries are thought to play an important part in enhancing deep-crustal conductivity, with brines and graphite being the main candidates1. At present, however, there is a lack of direct evidence for such films. Frost et al.2 have reported an enhancement in conductivity of igneous lower-crustal rocks from the La ramie complex apparently owing to the presence of graphite films, but the possible role of brines was not clear from this work. Here we present a study of the grain surface composition of metamorphic (and one igneous) rocks exhumed from 20 km depth by the Kapuskasing uplift of the Canadian shield3. We expect these samples to be representative of metamorphic and igneous rocks of the deep Archaean crust. Auger spectroscopy provides evidence for graphite films at grain boundaries, which can account for the present electrical signature of the Kapuskasing crust4–6. We also detect traces of chlorine, sulphur and iron, which suggest that brines and solid conductors other than graphite may have helped to enhance the conductivity, but their abundance suggests at best a minor role relative to graphite.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Jones, A. G. in Continental Lower Crusts (eds Fountain, D. M., Arculus, R, J. & Kay, R. W.) (Eisevier, New York, in the press).

  2. Frost, B. R., Fyfe, W. S., Tazaki, K. & Chan, T. Nature 340, 134–136 (1989).

    Article  ADS  CAS  Google Scholar 

  3. Percival, J. A., in Reflection Seismology: the Continental Crust (eds Barazangi, M. & Brown, L.) 135–142 (Am. geophys. Un., Washington DC, 1986).

    Book  Google Scholar 

  4. Katsube, T. J., Mareschal, M. & Aucoin, F. Geol. Survey Can. Current Res. Pap. 91-E, 257–263 (1991).

  5. Katsube, T. J., Scromeda, N. Mareschal, M. & Bailey, R. C. Geol. Survey Can. Current Res. (in the press).

  6. Katsube, T. J. & Mareschal, M. J. geophys. Res. (in the press).

  7. Gough, D. I. Nature 323, 143–144 (1986).

    Article  ADS  Google Scholar 

  8. Jones, A. G. Geophys. J. Int. 89, 7–18 (1987).

    Article  ADS  Google Scholar 

  9. Hyndman, R. D. & Shearer, P. M. Geophys. J. Int. 98, 343–365 (1989).

    Article  ADS  Google Scholar 

  10. McCaig, A. M., Geology 9, 867–870 (1988).

    Article  ADS  Google Scholar 

  11. Bailey, R. C. Geophys. Res. Lett. 17, 1129–1132 (1990).

    Article  ADS  Google Scholar 

  12. Yardley, B. W. D. Nature 323, 111 (1986).

    Article  ADS  Google Scholar 

  13. Haak, V. & Hutton, R. S. in The Nature of the Lower Continental Crust (eds Dawson, J. B., Carswell, D. A., Hall, J. & Wedepohl, K. H.) 35–49 (Geol. Soc. London, 1986).

    Google Scholar 

  14. Percival, J. A. Am. Mineral. 68, 667–686 (1983).

    CAS  Google Scholar 

  15. Li, H., Schwarcz, H. P. & Shaw, D. M. Contrib. Mineral. Petrol. 107, 448–458 (1991).

    Article  ADS  CAS  Google Scholar 

  16. Woods, D. V. & Allard, M. Phys. Earth planet. Inter. 42, 135–142 (1986).

    Article  ADS  Google Scholar 

  17. Bailey, R. C. Craven, J. A., Macnae, J. C. & Polzer, B. D. Nature 340, 136–138 (1989).

    Article  ADS  Google Scholar 

  18. Kurtz, R. D., Macnae, J. C. & West, G. F. Geophys. J. Int. 99, 195–203 (1989).

    Article  ADS  Google Scholar 

  19. Percival, J. A. et al. EOS 32, 337–341 (1991).

    ADS  Google Scholar 

  20. Kurtz, R. D., Craven, J. A., Niblett, E. R. & Stevens, R. A. Geophys. J. Int. (submitted).

  21. Kellett, R. L., Mareschal, M. & Kurtz, R. D. Geophys. J. Int. (in the press).

  22. Mareschal, J. C. Tectonophysics 194, 349–356 (1991).

    Article  ADS  Google Scholar 

  23. North, R. G. et al. Seism. Res. Lett. 60, 89–93 (1989).

    ADS  Google Scholar 

  24. Frape, S. K. & Fritz, P. in Saline Water and Gases in Crystalline Rocks (eds Fritz, P. & Frape, S. K.) 19–38 (Geol. Assoc. Canada, 1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mareschal, M., Fyfe, W., Percival, J. et al. Grain-boundary graphite in Kapuskasing gneisses and implications for lower-crustal conductivity. Nature 357, 674–676 (1992). https://doi.org/10.1038/357674a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/357674a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing