Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Segregation of global and local motion processing in primate middle temporal visual area

A Correction to this article was published on 16 September 1993

Abstract

THE early stages of primate visual processing appear to be divided up into several component parts so that, for example, colour, form and motion are analysed by anatomically distinct streams1–3. We have found that further subspecialization occurs within the motion processing stream. Neurons representing two different kinds of information about visual motion are segregated in columnar fashion within the middle temporal area of the owl monkey. These columns can be distinguished by labelling with 2-deoxyglucose in response to large-field random-dot patterns. Neurons in lightly labelled interbands have receptive fields with antagonistic surrounds: the response to a centrally placed moving stimulus is suppressed by motion in the surround. Neurons in more densely labelled bands have surrounds that reinforce the centre response so that they integrate motion cues over large areas of the visual field. Interband cells carry information about local motion contrast that may be used to detect motion boundaries or to indicate retinal slip during visual tracking. Band cells encode information about global motion that might be useful for orienting the animal in its environment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Livingstone, M. S. & Hubel, D. H. Science 240, 740–749 (1988).

    Article  ADS  CAS  Google Scholar 

  2. DeYoe, E. A. & Van Essen, D. C. Trends Neurosci. 11, 219–226 (1988).

    Article  CAS  Google Scholar 

  3. Maunsell, J. H. R. & Newsome, W. T. A. Rev. Neurosci. 10, 363–440 (1987).

    Article  CAS  Google Scholar 

  4. Tootell, R. B. H. & Born, R. T. Invest ophthalmol. visual Sci. 31, 238 (1990).

    Google Scholar 

  5. Tootell, R. B. H., Hamilton, S. L. & Silverman, M. S. J. Neurosci. 5, 2786–2800 (1985).

    Article  CAS  Google Scholar 

  6. Born, R. T. & Tootell, R. B. H. Proc. natn. Acad Sci. U.S.A. 88, 7066–7070 (1991).

    Article  ADS  CAS  Google Scholar 

  7. Wong-Riley, M. T. T. Brain Res. 171, 11–28 (1979).

    Article  CAS  Google Scholar 

  8. Baker, J. F., Petersen, S. E., Newsome, W. T. & Allman, J. M. J. Neurophysiol. 45, 397–416 (1981).

    Article  CAS  Google Scholar 

  9. Allman, J., Miezin, F. & McGuinness, E. Perception 14, 105–126 (1985).

    Article  CAS  Google Scholar 

  10. Tanaka, K., Hikosaka, K. & Saito, H. J. Neurosci. 6, 134–144 (1986).

    Article  CAS  Google Scholar 

  11. Lagae, L., Gulyas, B., Raiguel, S. & Orban, G. A. Brain Res. 496, 361–367 (1989).

    Article  CAS  Google Scholar 

  12. Sterling, P. & Wickelgren, B. G. J. Neurophysiol. 32, 1–15 (1969).

    Article  CAS  Google Scholar 

  13. Frost, B. J., Scilley, P. L. & Wong, S. C. P. Expl Brain Res. 43, 173–185 (1981).

    Article  CAS  Google Scholar 

  14. Frost, B. J. & Nakayama, K. Science 220, 744–745 (1983).

    Article  ADS  CAS  Google Scholar 

  15. Rockland, K. S. Vis. Neurosci. 3, 155–170 (1989).

    Article  CAS  Google Scholar 

  16. Hubel, D. H. & Wiesel, T. N. J. Physiol., Lond. 195, 215–243 (1968).

    Article  CAS  Google Scholar 

  17. Kuffler, S. W. J. Neurophysiol. 16, 37–68 (1953).

    Article  CAS  Google Scholar 

  18. Treisman, A. Sci. Am. 255, 106–115 (1986).

    Article  Google Scholar 

  19. Krauzlis, R. J. & Lisberger, S. G. Neural Comp. 1, 116–122 (1989).

    Article  Google Scholar 

  20. Wurtz, R. H., Duffy, C. J. & Roy, J. P. Cold Spring Harb Symp. quant Biol. LV, 45 (1990).

    Google Scholar 

  21. Kaas, J. H. & Morel, A. E. Invest. ophthalmol. vis. Sic. 33, 1219 (1992).

    Google Scholar 

  22. Tootell, R. B. H., Hamilton, S. L., Silverman, M. S. & Switkes, E. J. Neurosci. 8, 1500–1530 (1988).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Born, R., Tootell, R. Segregation of global and local motion processing in primate middle temporal visual area. Nature 357, 497–499 (1992). https://doi.org/10.1038/357497a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/357497a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing