Abstract
ARCHAEAN granite–greenstone terranes1–3 in which narrow belts of 'greenstone' (ultramafic and mafic volcanics) and overlying sedimentary rocks occur in association with broad provinces of 'granite' (granitic igneous rocks, gneiss and migmatite), have long puzzled geologists because of the lack of any clear modern analogues. Not only is there uncertainty about how the greenstone formed in the first place4–6 but there is continuing debate about how and when the terranes developed their distinctive structural and metamorphic architecture. Many granite–greenstone terranes display a dome-and-keel geometry, in which belts of supracrustal (volcanic and sedimentary) rocks occur as structural troughs wedged between dome-shaped bodies of the granite–gneiss–migmatite complex. A metamorphic aureole typically occurs in the supracrustals adjacent to their contact with the domes, and the contact itself is a shear zone. Here we report the results of field studies of a granite–greenstone terrane in Brazil, showing that this architecture originated during the Proterozoic, more than 500 million years after extrusion of the greenstone. We suggest that the thermal regime and deformation kinematics necessary to create this architecture could be generated during an episode of crustal extension, when hot basement rocks were transported upwards along a transcrustal normal fault system to the base of the supracrustals.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout
References
Anhaeusser, C. R., Mason, R., Viljoen, M. J. & Viljoen, R. P. Geol. Soc. Am. Bull. 80, 2175–2200 (1969).
Goodwin, A. M. Precambrian Geology: The Dynamic Evolution of the Continental Crust (Academic, London, 1991).
Platt, J. P. Tectonophysics 65, 127–150 (1980).
Boulter, C. A., Bickle, M. J., Gibson, B., & Wright, R. K. Precamb. Res. 36, 241–258 (1987).
Swager, C. & Griffin, T. J. Precamb. Res. 48, 63–73 (1990).
Kröner, A. in Precambrian Plate Tectonics (ed. Kröner, A.) 57–90 (Elsevier, Amsterdam, 1981).
Dorr, J. V. N. II U.S. Geol. Surv. Prof. Pap. 641-A, 110 (1969).
Almeida, F. F. M. Rev. Bras. Geoci. 7, 349–364 (1977).
Machado, N., Noce, C. M., Oliveira, O. A. B. & Ladeira, E. A. Bol. Soc. Brasil. Geoci. Nucléo Minas Gerais 8, 1–5 (1989).
Babinsky, M., Chemale, F. Jr & Van Schmus, W. R. Bol. Resum. 3rd Congr. Bras. Geoquimica, 628–629 (Socied. Brasil. Geoq., São Paulo, 1991).
Marshak, S. & Alkmim, F. F. Tectonics 8, 555–571 (1989).
Almeida, F. F. M. & Hasui, Y. in O Precambriano do Brasil (eds Almeida, F. F. M. & Hasui, Y.) 1–5 (Blücher, Saõ Paulo, 1984).
Chemale, F. Jr, Rosiere, C. A. & Endo, I. Rev. Pesquisas Univ. Fed. Rio Grande do Sul (Univ. Fed. Rio Grande do Sul, Porto Alegre, in the press).
Jordt-Evangelista, H., Alkmim, F. F. & Marshak, S. 6th Simp. Geol. Minas Gerais (Revista Escola de Minas (REM), Ouro Preto, in the press).
Marshak, S., Alkmim, F. F. & Evangelista, H. Geol. Soc. Am. Abstr. Programs 23, 308 (1991).
Sandiford, M. & Powell, R. Earth planet. Sci. Lett. 79, 151–158 (1986).
White, R. S. & McKenzie, D. P. J. geophys. Res. 94, 7685–7730 (1989).
Lister, G. S., Etheridge, M. A. & Symonds, P. A. Tectonics 10, 1039–1064 (1991).
Molnar, P. & England, P. J. geophys. Res. 95, 4833–4856 (1990).
Condie, K. C. Plate Tectonics & Crustal Evolution, 3rd edn (Pergamon, Oxford, 1989).
Schwerdtner, W. M., Morgan, J. & Stott, G. M. Geol. Assoc. Can. Spec. Paper 28, 117–123 (1985).
Fyson, W. K., Herd, R. K. & Ermanovics, I. F. Can. J. Earth. Sci. 15, 1817–1825 (1978).
Collins, W. J. & Vernon, R. H. Geology 19, 835–838 (1991).
Houseman, G. A., McKenzie, D. P. & Molnar, P. J. geophys. Res. 86, 6115–6132 (1981).
Turner, S. & Foden, J. Geol. Soc. Austr. Abstr. 25, 262–263 (1990).
Spencer, J. E. Geology 12, 95–98 (1984).
Park, R. G. Geol. Rund. 71, 22–37 (1982).
Allen, T. & Chamberlain, C. P. Earth planet. Sci. Lett. 93, 392–404 (1989).
Gorman, B. E., Pearce, T. H. & Birkett, T. C. Precamb. Res. 6, 23–41 (1978).
Spry, J. G. J. struct. Geol. 7, 187–203 (1985).
Hudleston, P. J., Schultz-Ela, D. & Southwick, D. L. Can. J. Earth Sci. 25, 1060–1068 (1988).
Feng, R. & Kerrich, R. Geology 18, 870–873 (1990).
Nalini, E. A. Jr & Hippert, J. F. 6th Simp. Geol. Minas Gerais (Revista Escola de Minas (REM), Ouro Preto, in the press).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Marshak, S., Alkmim, F. & Jordt-Evangelista, H. Proterozoic crustal extension and the generation of dome-and-keel structure in an Archaean granite–greenstone terrane. Nature 357, 491–493 (1992). https://doi.org/10.1038/357491a0
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/357491a0
This article is cited by
-
The progressive onset and evolution of Precambrian subduction and plate tectonics
Science China Earth Sciences (2020)
-
Using oxygen isotope chemistry to track hydrothermal processes and fluid sources in itabirite-hosted iron ore deposits in the Quadrilátero Ferrífero, Minas Gerais, Brazil
Mineralium Deposita (2014)
-
Genesis of itabirite-hosted Au–Pd–Pt-bearing hematite-(quartz) veins, Quadrilátero Ferrífero, Minas Gerais, Brazil: constraints from fluid inclusion infrared microthermometry, bulk crush-leach analysis and U–Pb systematics
Mineralium Deposita (2005)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.