Abstract
RECONSTRUCTIONSof early Eocene climate depict a world in which the polar environments support mammals and reptiles, deciduous forests, warm oceans and rare frost conditions 1–5. At the same time, tropical sea surface temperatures are interpreted to have been the same as or slightly cooler than present values6. The question of how to warm polar regions of Earth without noticeably warming the tropics remains unresolved; increased amounts of greenhouse gases would be expected to warm all latitudes equally7. Oceanic heat transport has been postulated as a mechanism for heating high latitudes8–10, but it is difficult to explain the dynamics that would achieve this7,11. Here we consider estimates of Eocene wetland areas and suggest that the flux of methane, an important greenhouse gas, may have been substantially greater during the Eocene than at present. Elevated methane concentrations would have enhanced early Eocene global warming, and also might specifically have prevented severe winter cooling of polar regions because of the potential of atmospheric methane to promote the formation of optically thick, polar stratospheric ice clouds12–14.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Estes, R. & Hutchison, J. H. Palaeogeogr. Palaeoclimatol Palaeoecol. 30, 325–347 (1980).
Schweitzer, H.-J. Palaeogeogr. Palaeoclimatol. Palaeoecol. 30, 297–311 (1980).
Kennett, J. P. & Stott, L. D. Nature 353, 225–229 (1991).
Kemp, E. M. Palaeogeogr. Palaeoclimatol. Palaeoecol. 24, 169–208 (1978).
Case, J. A., in Geology and Palaeontology of Seymour Island, Antarctic Peninsula (eds Feldmann, R. M. & Woodburne, M. O.) 523–530 (Geol. Soc. Am., Boulder, Colorado, 1988).
Shackleton, N. J. & Boersma, A. Geol. Soc. Lond. J. 138, 153–157 (1981).
Crowley, T. J. Quat. Sci. Rev. 10, 275–282 (1991).
Barron, E. J. Paleoceanography 2, 729–739 (1987).
Rind, D. & Chandler, M. J. geophys. Res. 96, 7437–7461 (1991).
Crowley, T. J. Paleoceanography 6, 387–394 (1991).
Sloan, L. C. & Walker, J. C. G. Geophys. Res. Lett. (submitted).
Pollack, J. B. & McKay, C. P. J. atmos. Sci. 42, 245–262 (1985).
Kinne, S. & Toon, O. B. Geophys. Res. Lett. 17, 373–376 (1990).
McCormick, M. P., Trepte, C. R. & Pitts, M. C. J. geophys. Res. 94, 11241–11251 (1989).
World Meteorological Organization/United Nations Environment Programme Climate Change, The IPCC Scientific Assessment (eds Houghton, J. T., Jenkins, G. J. & Ephraums, J. J.) (Cambridge Univ. Press, 1990).
Sheppard, J. C., Westberg, H., Hopper, J. F., Ganesan, K. & Zimmerman, P. J. geophys. Res. 87, 1305–1312 (1982).
Cicerone, R. J. & Oremland, R. S. Glob. Biogeochem. Cycles 2, 299–327 (1988).
Ronov, A. B., Khain, V. Y. & Balukhovskiy, A. N. Int. Geol. Rev. 21, 415–446 (1979).
Askin, R. A. in Geology and Paleontology of Seymour Island, Antarctic Peninsula (eds Feldmann, R. M. & Woodburne, M. O.) 131–135 (Geol. Soc. Am., Boulder, Colorado, 1988).
Sloan, L. C. thesis, Pennsylvania State Univ. (1990).
Rasmussen, R. A. & Kahlil, M. A. K. J. geophys. Res. 86, 9826–9832 (1981).
Rinsland, C. P. et al. J. geophys. Res. 89, 7259–7256 (1984).
McCormick, M. P. & Trepte, C. R. J. geophys. Res. 92, 4297–4306 (1987).
Ramanathan, V. et al. Rev. Geophys. 25, 1441–1482 (1987).
Ramanathan, V. et al. Science 243, 57–59 (1989).
Arthur, M. A., Allard, D. & Hinga, K. R. Geol. Soc. Am. Prog. Vol. 23, 178 (1992).
Berner, R. Am. J. Sci. 291, 339–376 (1991).
Barron, E. J. & Washington, W. M. Palaeogeogr. Palaeoclimatol. Palaeoecol. 40, 103–133 (1982).
Wolfe, J. A. & Upchurch, G. R. Jr Palaeogeogr. Palaeoclimatol. Palaeoecol. 61, 33–77 (1987).
Haq, B. U., Hardenbol, J. & Vail, P. R. Science 235, 1156–1167 (1987).
Shackleton, N. J., Hall, M. A. & Boersma, A. Init. Rep. Deep Sea Drilling Proj. 74, 599–612 (US Govt Printing Office, Washington DC, 1984).
Miller, K. G., Janacek, T. R., Katz, M. E. & Keil, D. J. Paleoceanography 2, 741–761 (1987).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Sloan, L., Walker, J., Moore, T. et al. Possible methane-induced polar warming in the early Eocene. Nature 357, 320–322 (1992). https://doi.org/10.1038/357320a0
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/357320a0
This article is cited by
-
High temperatures in the terrestrial mid-latitudes during the early Palaeogene
Nature Geoscience (2018)
-
Late Paleocene–early Eocene carbon isotope stratigraphy from a near-terrestrial tropical section and antiquity of Indian mammals
Journal of Earth System Science (2013)
-
Past extreme warming events linked to massive carbon release from thawing permafrost
Nature (2012)
-
Carbon dioxide forcing alone insufficient to explain Palaeocene–Eocene Thermal Maximum warming
Nature Geoscience (2009)
-
Enigmatic Earth
Nature Geoscience (2009)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.