Domain boundaries and buckling superstructures in Langmuir–Blodgett films

Abstract

MANY technological and scientific applications have been proposed for Langmuir–Blodgett (LB) films1. These ordered arrays of oriented amphiphilic molecules may be useful as nonlinear optical systems2, as insulating or patterning layers in microelectronics3,4, as model systems for studies of two-dimensional phases5 and as molecular templates for protein crystallization6. The potential of LB films for these applications is sensitive to the details of their molecular packing; in particular, they require that the layers have a defect-free, periodic structure1. Here we present images from atomic force microscopy of domain boundaries between regions of different crystallographic orientation in LB multilayers. The regular lattice structure is preserved to within 1 nm of the grain boundaries, and the domains are oriented in a near-twinning arrangement. We also observe a periodic buckling superstructure along a particular lattice symmetry direction, with a wavelength of about 2 nm and an amplitude of ≤0.1 nm. The buckling was independent of surface pressure during deposition, dipping direction, number of layers deposited and nature of the substrate, and was stable over many hours. These departures from two-dimensional periodicity may have an important bearing on applications that rely on perfect crystallinity.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Roberts, G. G. Langmuir-Blodgett Films (Plenum, New York, 1990).

  2. 2

    Stroeve, P., Srinivasan, M. P., Higgins, B. G. & Kowel, S. T. Thin Solid Films 146, 209–216 (1987).

  3. 3

    Tredgold, R. H. Vickers, A. J. & Allen, R. A., J. Phys. D 17, L5–L8 (1984).

  4. 4

    Swalen, J. D. et al. Langmuir 3, 932–950 (1987).

  5. 5

    Nelson, D. R. & Halperin, B. I. Phys Rev. B 21, 5312, (1980).

  6. 6

    Darst, S. A., Ribi, H. O., Pierce, D. W. & Kornberg, R. D. J. molec. Biol. 203, 269–273 (1988).

  7. 7

    Carlson, J. M. & Sethna, J. P. Phys. Rev. A36, 3359–3374 (1987)

  8. 8

    Safran, S. A., Robbins, M. O. & Garoff, S. Phys. Rev. A33, 2186–2189 (1986).

  9. 9

    Peterson, I. T., Steith, R., Krug, H. & Voight-Martin, I. J. Phys. (France), 51, 1003–1026 (1990).

  10. 10

    Steitz, R., Mitchell, E. E. & Peterson, I. R. Thin Solid Films 205, 124–130, (1991).

  11. 11

    Garoff, S., Deckman, H. W., Dunsmuir, J. H. & Alvarez, M. S. J. Phys. (France) 47, 701–709 (1985).

  12. 12

    Inoue, T. et al. Thin Solid Films 180, 199–203 (1989).

  13. 13

    Fryer, J. R., Hann, R. A. & Eyres, B. L. Nature 313, 382–384 (1985).

  14. 14

    Prakash, M., Dutta, P., Ketterson, J. B. & Abraham, B. M. Chem. Phys. Lett. 111, 395–398 (1984).

  15. 15

    Schlossman, M. L. et al. Phys. Rev. Lett. 66, 1599–1602 (1991).

  16. 16

    Kjaer, K., Als-Nielsen, J., Helm, C. A., Tippman-Krayer, P. & Möhwald, H. J. Phys. Chem. 93, 3200–3206 (1989).

  17. 17

    Leveiller, F. et al. Science 252, 1532–1536 (1991).

  18. 18

    Lin, B., Shih, M. C., Bohanon, T. M., Ice, G. E. & Dutta, P. Phys. Rev. Lett. 65, 191–194 (1990).

  19. 19

    Prakash, M., Peng, J. B., Ketterson, J. B. & Dutta, P. Chem. Phys. Lett 128, 354–357 (1986).

  20. 20

    Outka, D. A., Stöhr, J., Rabe, J. P., Swalen, J. D. & Rotermund, H. H. Phys. Rev. Lett. 59, 1321–1324 (1987).

  21. 21

    Smith, D. P. E. et al. Proc. natn. Acad. Sci. USA 84, 969–972 (1987).

  22. 22

    Rabe, J. P. & Buchholz, S. Phys. Rev. Lett. 66, 2096–2099 (1991).

  23. 23

    Zasadzinski, J. A. N. et al. Biophys. J. 59, 755–760 (1991).

  24. 24

    Hansma, H. G. et al. Langmuir 7, 1051–1054 (1991).

  25. 25

    Bourdieu, L., Silberzan, P. & Chatenay, D. Phys. Rev. Lett. 67, 2029–2032 (1991).

  26. 26

    Meyer, E. et al. Nature 349, 398–400 (1991).

  27. 27

    Schwartz, D. K., Garnaes, J., Viswanathan, R. & Zasadzinski, J. A. N. (manuscript in preparation).

  28. 28

    Kitaigorodskii, A. I. Organic Chemical Crystallography (Consultant Bureau, New York, 1961).

  29. 29

    Zasadzinski, J. A. N., Schneir, J., Gurley, J., Elings, V. & Hansma, P. K. Science 239, 1013–1015 (1988).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Garnaes, J., Schwartz, D., Viswanathan, R. et al. Domain boundaries and buckling superstructures in Langmuir–Blodgett films. Nature 357, 54–57 (1992). https://doi.org/10.1038/357054a0

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.