Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Spatial structure of cone inputs to receptive fields in primate lateral geniculate nucleus

Abstract

HUMAN colour vision depends on three classes of cone photoreceptors, those sensitive to short (S), medium (M) or long (L) wavelengths, and on how signals from these cones are combined by neurons in the retina and brain. Macaque monkey colour vision is similar to human, and the receptive fields of macaque visual neurons have been used as an animal model of human colour processing1. P retinal ganglion cells and parvocellular neurons are colour-selective neurons in macaque retina and lateral geniculate nucleus. Interactions between cone signals feeding into these neurons are still unclear. On the basis of experimental results with chromatic adaptation, excitatory and inhibitory inputs from L and M cones onto P cells (and parvocellular neurons) were thought to be quite specific2,3 (Fig. la). But these experiments with spatially diffuse adaptation did not rule out the 'mixed-surround' hypothesis: that there might be one cone-specific mechanism, the receptive field centre, and a surround mechanism connected to all cone types indiscriminately (Fig. le). Recent work has tended to support the mixed-surround hypothesis4–8. We report here the development of new stimuli to measure spatial maps of the linear L-, M- and S-cone inputs to test the hypothesis definitively. Our measurements contradict the mixed-surround hypothesis and imply cone specificity in both centre and surround.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. DeValois, R. L., Morgan, H. C., Polson, M. C., Mead, W. R. & Hull, E. M. Vision Res. 14, 53–67 (1974).

    Article  CAS  Google Scholar 

  2. Wiesel, T. N. & Hubel, D. H. J. Neurophysiol. 29, 1115–1156 (1966).

    Article  CAS  Google Scholar 

  3. Gouras, P. J. Physiol. 199, 533–547 (1968).

    Article  CAS  Google Scholar 

  4. Paulus, W. & Kroger-Paulus, A. Vision Res. 23, 529–540 (1983).

    Article  CAS  Google Scholar 

  5. Shapley, R. & Perry, V. H. Trends Neurosci. 9, 229–235 (1986).

    Article  Google Scholar 

  6. Lennie, P., Haake, P. W. & Williams, D. R. in Computational Models of Visual Processing (eds Landy, M. S. & Movshon, J. A.) 71–82 (MIT, Cambridge. 1991).

    Google Scholar 

  7. Boycott, B. B., Hopkins, J. M. & Sperling, H. G. Proc. R. Soc. B229, 345–379 (1987).

    ADS  CAS  Google Scholar 

  8. Wassle, H., Boycott, B. B. & Rohrenbeck, J. Eur. J. Neurosci. 1, 421–435 (1991).

    Article  Google Scholar 

  9. Sutter, E. Adv. Meth. Physiol. Syst. Modelling 1, 303–315 (Univ. Southern California, 1987).

    Google Scholar 

  10. Citron, M. C., Kroeker, J. P. & McCann, G. D. J. Neurophysiol. 46, 1161–1176 (1981).

    Article  CAS  Google Scholar 

  11. Jones, J. P. & Palmer, L. A. J. Neurophysiol. 58, 1187–1211 (1987).

    Article  CAS  Google Scholar 

  12. Gaska, J. P., Jacobson, L. D., Chen, H.-W. & Pollen, D. A. Soc. Neurosci. Abstr. 15, 1056 (1989).

    Google Scholar 

  13. Reid, R. C., Shapley, R. M. & Victor, J. D. Soc. Neurosci. Abstr. 15, 323 (1989).

    Google Scholar 

  14. Reid, R. C. & Shapley, R. M. Invest. Ophthalmol. Vis. Sci. 31 (suppl.), 429 (1990).

    Google Scholar 

  15. Estevez, O. & Spekreijse, H. Vision Res. 22, 681–691 (1982).

    Article  CAS  Google Scholar 

  16. Gielen, C. C. A. M., van Gisergen, J. A. M. & Vendrik, A. J. H. Biol. Cybern. 44, 211–221 (1982).

    Article  CAS  Google Scholar 

  17. Lee, B. B., Martin, P. R. & Valberg, A. J. Physiol. 414, 223–243 (1989).

    Article  CAS  Google Scholar 

  18. Kaplan, E. & Shapley, R. Expl Brain Res. 55, 111–116 (1984).

    Article  CAS  Google Scholar 

  19. Kaplan, E. & Shapley, R. M. Proc. natn. Acad. Sci. U.S.A. 83, 2755–2757 (1986).

    Article  ADS  CAS  Google Scholar 

  20. DeMonasterio, F. M. & Gouras, P. J. Physiol. 251, 167–195 (1975).

    Article  CAS  Google Scholar 

  21. Hubel, D. & Livingstone, M. Cold Spring Harb. Symp. quant. biol. 55, 643–649 (1991).

    Article  Google Scholar 

  22. Boycott, B. B. & Wassle, H. Eur. J. Neurosci. 5, 1069–1088 (1991).

    Article  Google Scholar 

  23. Milkman, N. et al. Behav. Res. Meth. Instrum. 12, 283–292 (1980).

    Article  Google Scholar 

  24. Sutter, E. E. SIAM J. Comput. 20, 686–694 (1992).

    Article  ADS  Google Scholar 

  25. Smith, V. C. & Pokorny, J. Vision Res. 12, 2059–2071 (1972).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reid, R., Shapley, R. Spatial structure of cone inputs to receptive fields in primate lateral geniculate nucleus. Nature 356, 716–718 (1992). https://doi.org/10.1038/356716a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/356716a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing