Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Homeodomain-independent activity of the fushi tarazu polypeptide in Drosophila embryos

Abstract

THE Drosophila segmentation gene fushi tarazu (ftz) encodes a homeodomain-containing protein, ftz, that can act as a DNA-binding activator of transcription1–5. In the developing embryo, ftz is expressed in seven stripes6 which correspond to the even-numbered parasegments7. These parasegments are missing in ftz' embryos8. When ftz is expressed throughout blastoderm embryos under the control of a heat-shock promoter, the odd-numbered parasegments are lost9. This 'anti-ftz' phenotype has been attributed to autoactivation of the endogenous ftz gene by the ectopically expressed protein10. Here we show that the same phenotype is induced by ectopic expression of a ftz polypeptide containing a deletion in the homeodomain. Thus, ftz can alter gene expression without binding directly to DNA.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Jaynes, J. & O'Farrell, P. H. Nature 336, 744–749 (1988).

    Article  ADS  CAS  Google Scholar 

  2. Winslow, G., Hayashi, S., Krasnow, M., Hogness, D. & Scott, M. Cell 57, 1017–1030 (1989).

    Article  CAS  Google Scholar 

  3. Han, K., Levine, M. & Manley, J. Cell 56, 573–583 (1989).

    Article  CAS  Google Scholar 

  4. Fitzpatrick, V. D. & Ingles, C. J. Nature 337, 666–668 (1989).

    Article  ADS  CAS  Google Scholar 

  5. Ohkuma, Y., Horikoshi, M., Roeder, R. & Desplans, C. Cell 61, 475–484 (1990).

    Article  CAS  Google Scholar 

  6. Hafen, E., Kuroiwa, A. & Gehring, W. J. Cell 37, 833–841 (1984).

    Article  CAS  Google Scholar 

  7. Lawrence, P., Johnston, P., MacDonald, P. & Struhl, G. Nature 328, 440–442 (1987).

    Article  ADS  CAS  Google Scholar 

  8. Wakimoto, B. T., Turner, R. R. & Kaufman, T. C. Devl Biol. 102, 147–172 (1984).

    Article  CAS  Google Scholar 

  9. Struhl, G. Nature 318, 677–680 (1985).

    Article  ADS  CAS  Google Scholar 

  10. Ish-Horowicz, D., Pinchin, S., Ingham, P. W. & Gyurkovics, H. Cell 57, 223–232 (1989).

    Article  CAS  Google Scholar 

  11. Frankel, A. D. & Kim, P. S. Cell 65, 717–719 (1991).

    Article  CAS  Google Scholar 

  12. Mann, R. S. & Hogness, D. S. Cell 60, 597–610 (1990).

    Article  CAS  Google Scholar 

  13. Gibson, G., Schier, A., LeMotte, P. & Gehring, W. J. Cell 62, 1087–1103 (1990).

    Article  CAS  Google Scholar 

  14. Kuziora, M. A. & McGinnis, W. Cell 59, 563–571 (1989).

    Article  CAS  Google Scholar 

  15. Berleth, T. et al. EMBO J. 7, 1749–1756 (1988).

    Article  CAS  Google Scholar 

  16. Wright, C. V. E., Cho, K. W. Y., Fritz, A., Burglin, T. R. & De Robertis, E. M. EMBO J. 6, 4083–4094 (1987).

    Article  CAS  Google Scholar 

  17. Condie, B. G., Brivanlou, A. H. & Harland, R. M. Molec. cell. Biol. 7, 3376–3385 (1990).

    Article  Google Scholar 

  18. Murphy, P. & Hill, R. E. Development 111, 61–74 (1991).

    CAS  Google Scholar 

  19. Joyner, A. L., Herrup, K., Auerbach, B. A., Davis, C. A. & Rossant, J. Science 251, 1239–1243 (1991).

    Article  ADS  CAS  Google Scholar 

  20. Krause, H. M., Klemenz, R. & Gehring, W. J. Genes Dev. 2, 1021–1036 (1988).

    Article  CAS  Google Scholar 

  21. Krasnow, M. A., Saffman, E. E., Kornfeld, K. & Hogness, D. S. Cell 57, 1031–1042 (1989).

    Article  CAS  Google Scholar 

  22. Schneuwly, S., Klemenz, R. & Gehring, W. J. Nature 325, 816–818 (1987).

    Article  ADS  CAS  Google Scholar 

  23. Rubin, G. M. & Spradling, A. C. Science 218, 348–353 (1982).

    Article  ADS  CAS  Google Scholar 

  24. Weischaus, E. & Nusslein-Volhard, C. in Drosophila: A Practical Approach (ed. Roberts, D. B.) 199–228 (IRL, Oxford, 1986).

    Google Scholar 

  25. West, R. W., Yocum, R. R. & Ptashne, M. Molec. cell Biol. 4, 2467–2478 (1984).

    Article  CAS  Google Scholar 

  26. Edgar, B. & O'Farrell, P. Cell 62, 469–480 (1990).

    Article  CAS  Google Scholar 

  27. Krause, H. & Gehring, W. EMBO J. 8, 1197–1204 (1989).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fitzpatrick, V., Percival-Smith, A., Ingles, C. et al. Homeodomain-independent activity of the fushi tarazu polypeptide in Drosophila embryos. Nature 356, 610–612 (1992). https://doi.org/10.1038/356610a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/356610a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing